These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 26986391)

  • 1. Force of adhesion on supersolvophobic surfaces: The role of capillary necks.
    Escobar JV; Castillo R
    Phys Rev E; 2016 Feb; 93(2):022804. PubMed ID: 26986391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Equilibrium contact angles of liquid droplets on ideal rough solids.
    Kang HC; Jacobi AM
    Langmuir; 2011 Dec; 27(24):14910-8. PubMed ID: 22053925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wetting of Surfaces Made of Hydrophobic Cavities.
    Lloyd BP; Bartlett PN; Wood RJ
    Langmuir; 2015 Sep; 31(34):9325-30. PubMed ID: 26267302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces.
    Erbil HY; Cansoy CE
    Langmuir; 2009 Dec; 25(24):14135-45. PubMed ID: 19630435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drop spreading on a superhydrophobic surface: pinned contact line and bending liquid surface.
    Wang Y; Andrews JE; Hu L; Das S
    Phys Chem Chem Phys; 2017 Jun; 19(22):14442-14452. PubMed ID: 28530761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiscale effect of hierarchical self-assembled nanostructures on superhydrophobic surface.
    Passoni L; Bonvini G; Luzio A; Facibeni A; Bottani CE; Di Fonzo F
    Langmuir; 2014 Nov; 30(45):13581-7. PubMed ID: 25346328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trapped liquid drop at the end of capillary.
    Wang Z; Yen HY; Chang CC; Sheng YJ; Tsao HK
    Langmuir; 2013 Oct; 29(39):12154-61. PubMed ID: 24004041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. VOF simulations of the contact angle dynamics during the drop spreading: standard models and a new wetting force model.
    Malgarinos I; Nikolopoulos N; Marengo M; Antonini C; Gavaises M
    Adv Colloid Interface Sci; 2014 Oct; 212():1-20. PubMed ID: 25150614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces.
    Zheng QS; Yu Y; Zhao ZH
    Langmuir; 2005 Dec; 21(26):12207-12. PubMed ID: 16342993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the validity of the Cassie equation via a mean-field free-energy lattice Boltzmann approach.
    Zhang J; Kwok DY
    J Colloid Interface Sci; 2005 Feb; 282(2):434-8. PubMed ID: 15589550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of oil drops with surfaces of different interfacial energy and topography.
    Cremaldi JC; Khosla T; Jin K; Cutting D; Wollman K; Pesika N
    Langmuir; 2015 Mar; 31(11):3385-90. PubMed ID: 25723337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of nanoscale particle roughness on the stability of Pickering emulsions.
    San-Miguel A; Behrens SH
    Langmuir; 2012 Aug; 28(33):12038-43. PubMed ID: 22846043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microscopic description of a drop on a solid surface.
    Ruckenstein E; Berim GO
    Adv Colloid Interface Sci; 2010 Jun; 157(1-2):1-33. PubMed ID: 20362270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impingement dynamics of water drops onto four graphite morphologies: from triple line recoil to pinning.
    Pittoni PG; Tsao HK; Hung YL; Huang JW; Lin SY
    J Colloid Interface Sci; 2014 Mar; 417():256-63. PubMed ID: 24407685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct observation of drops on slippery lubricant-infused surfaces.
    Schellenberger F; Xie J; Encinas N; Hardy A; Klapper M; Papadopoulos P; Butt HJ; Vollmer D
    Soft Matter; 2015 Oct; 11(38):7617-26. PubMed ID: 26291621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mimicking both petal and lotus effects on a single silicon substrate by tuning the wettability of nanostructured surfaces.
    Dawood MK; Zheng H; Liew TH; Leong KC; Foo YL; Rajagopalan R; Khan SA; Choi WK
    Langmuir; 2011 Apr; 27(7):4126-33. PubMed ID: 21355585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wetting and wetting transitions on copper-based super-hydrophobic surfaces.
    Shirtcliffe NJ; McHale G; Newton MI; Perry CC
    Langmuir; 2005 Feb; 21(3):937-43. PubMed ID: 15667171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping microscale wetting variations on biological and synthetic water-repellent surfaces.
    Liimatainen V; Vuckovac M; Jokinen V; Sariola V; Hokkanen MJ; Zhou Q; Ras RHA
    Nat Commun; 2017 Nov; 8(1):1798. PubMed ID: 29176751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determining the contact angle between liquids and cylindrical surfaces.
    Dumitrascu N; Borcia C
    J Colloid Interface Sci; 2006 Feb; 294(2):418-22. PubMed ID: 16139289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.