These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Rayleigh-Taylor instability and vortex rings in coupled Gross-Pitaevskii equations. Sakaguchi H; Chono H Phys Rev E; 2017 Nov; 96(5-1):052222. PubMed ID: 29347763 [TBL] [Abstract][Full Text] [Related]
3. Exact, approximate, and hybrid treatments of viscous Rayleigh-Taylor and Richtmyer-Meshkov instabilities. Mikaelian KO Phys Rev E; 2019 Feb; 99(2-1):023112. PubMed ID: 30934361 [TBL] [Abstract][Full Text] [Related]
4. Fingering instability and mixing of a blob in porous media. Pramanik S; Mishra M Phys Rev E; 2016 Oct; 94(4-1):043106. PubMed ID: 27841573 [TBL] [Abstract][Full Text] [Related]
5. The Inhibition of the Rayleigh-Taylor Instability by Rotation. Baldwin KA; Scase MM; Hill RJ Sci Rep; 2015 Jul; 5():11706. PubMed ID: 26130005 [TBL] [Abstract][Full Text] [Related]
6. Viscous Rayleigh-Taylor and Richtmyer-Meshkov instabilities in the presence of a horizontal magnetic field. Sun YB; Wang C Phys Rev E; 2020 May; 101(5-1):053110. PubMed ID: 32575244 [TBL] [Abstract][Full Text] [Related]
7. Rayleigh-Taylor instability of crystallization waves at the superfluid-solid 4He interface. Burmistrov SN; Dubovskii LB; Tsymbalenko VL Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051606. PubMed ID: 19518466 [TBL] [Abstract][Full Text] [Related]
8. Rayleigh-Taylor instability of viscous fluids with phase change. Kim BJ; Kim KD Phys Rev E; 2016 Apr; 93():043123. PubMed ID: 27176406 [TBL] [Abstract][Full Text] [Related]
9. Density-driven instabilities of variable-viscosity miscible fluids in a capillary tube. Meiburg E; Vanaparthy SH; Payr MD; Wilhelm D Ann N Y Acad Sci; 2004 Nov; 1027():383-402. PubMed ID: 15644370 [TBL] [Abstract][Full Text] [Related]
10. Mathematical model of Rayleigh-Taylor and Richtmyer-Meshkov instabilities for viscoelastic fluids. Rollin B; Andrews MJ Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046317. PubMed ID: 21599305 [TBL] [Abstract][Full Text] [Related]
11. Numerical computation of the Rayleigh-Taylor instability for a viscous fluid with regularized interface properties. González-Gutiérrez LM; de Andrea González A Phys Rev E; 2019 Jul; 100(1-1):013101. PubMed ID: 31499828 [TBL] [Abstract][Full Text] [Related]
12. Linear motion of multiple superposed viscous fluids. Vartdal M; Osnes AN Phys Rev E; 2019 Apr; 99(4-1):043104. PubMed ID: 31108711 [TBL] [Abstract][Full Text] [Related]
13. Acceleration- and deceleration-phase nonlinear Rayleigh-Taylor growth at spherical interfaces. Clark DS; Tabak M Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056308. PubMed ID: 16383746 [TBL] [Abstract][Full Text] [Related]
14. Anisotropy and feedthrough in magneto-Rayleigh-Taylor instability. Lau YY; Zier JC; Rittersdorf IM; Weis MR; Gilgenbach RM Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 2):066405. PubMed ID: 21797496 [TBL] [Abstract][Full Text] [Related]
15. On effects of elasticity and magnetic fields in the linear Rayleigh-Taylor instability of stratified fluids. Chen Y; Wang W; Zhao Y J Inequal Appl; 2018; 2018(1):203. PubMed ID: 30839557 [TBL] [Abstract][Full Text] [Related]
16. A New Approach to the Rayleigh-Taylor Instability. Gebhard B; Kolumbán JJ; Székelyhidi L Arch Ration Mech Anal; 2021; 241(3):1243-1280. PubMed ID: 34720113 [TBL] [Abstract][Full Text] [Related]
17. Compressibility effects in Rayleigh-Taylor instability-induced flows. Gauthier S; Le Creurer B Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1916):1681-704. PubMed ID: 20211880 [TBL] [Abstract][Full Text] [Related]
18. Cylindrical convergence effects on the Rayleigh-Taylor instability in elastic and viscous media. Piriz AR; Piriz SA; Tahir NA Phys Rev E; 2022 Jul; 106(1-2):015109. PubMed ID: 35974612 [TBL] [Abstract][Full Text] [Related]
19. Onset of convection in Soret-driven instability. Shevtsova VM; Melnikov DE; Legros JC Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 2):047302. PubMed ID: 16711959 [TBL] [Abstract][Full Text] [Related]
20. Control of Rayleigh-Taylor instability by vertical vibration in large aspect ratio containers. Lapuerta V; Mancebo FJ; Vega JM Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 2):016318. PubMed ID: 11461402 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]