These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 26986477)

  • 21. Highly Durable Nanofiber-Reinforced Elastic Conductors for Skin-Tight Electronic Textiles.
    Jin H; Nayeem MOG; Lee S; Matsuhisa N; Inoue D; Yokota T; Hashizume D; Someya T
    ACS Nano; 2019 Jul; 13(7):7905-7912. PubMed ID: 31244040
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density.
    Cheng Q; Tang J; Ma J; Zhang H; Shinya N; Qin LC
    Phys Chem Chem Phys; 2011 Oct; 13(39):17615-24. PubMed ID: 21887427
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multidimensional Ternary Hybrids with Synergistically Enhanced Electrical Performance for Conductive Nanocomposites and Prosthetic Electronic Skin.
    Hu Y; Liu X; Tian L; Zhao T; Wang H; Liang X; Zhou F; Zhu P; Li G; Sun R; Wong CP
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):38493-38505. PubMed ID: 30351905
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new electrochemical sensor of nitro aromatic compound based on three-dimensional porous Pt-Pd nanoparticles supported by graphene-multiwalled carbon nanotube composite.
    Yuan CX; Fan YR; Tao-Zhang ; Guo HX; Zhang JX; Wang YL; Shan DL; Lu XQ
    Biosens Bioelectron; 2014 Aug; 58():85-91. PubMed ID: 24632133
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Graphene oxide sheet-prussian blue nanocomposites: green synthesis and their extraordinary electrochemical properties.
    Liu XW; Yao ZJ; Wang YF; Wei XW
    Colloids Surf B Biointerfaces; 2010 Dec; 81(2):508-12. PubMed ID: 20719478
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrically conductive polymeric materials with high stretchability and excellent elasticity by a surface coating method.
    Li Y; Zhao L; Shimizu H
    Macromol Rapid Commun; 2011 Feb; 32(3):289-94. PubMed ID: 21433173
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The piezoresistive effect in graphene-based polymeric composites.
    Tamburrano A; Sarasini F; De Bellis G; D'Aloia AG; Sarto MS
    Nanotechnology; 2013 Nov; 24(46):465702. PubMed ID: 24149437
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced mechanical properties of nanocomposites at low graphene content.
    Rafiee MA; Rafiee J; Wang Z; Song H; Yu ZZ; Koratkar N
    ACS Nano; 2009 Dec; 3(12):3884-90. PubMed ID: 19957928
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A highly stretchable and conductive 3D porous graphene metal nanocomposite based electrochemical-physiological hybrid biosensor.
    Xuan X; Kim JY; Hui X; Das PS; Yoon HS; Park JY
    Biosens Bioelectron; 2018 Nov; 120():160-167. PubMed ID: 30173012
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Polyhydroxyalkanoate/carbon nanotube nanocomposites: flexible electrically conducting elastomers for neural applications.
    Vallejo-Giraldo C; Pugliese E; Larrañaga A; Fernandez-Yague MA; Britton JJ; Trotier A; Tadayyon G; Kelly A; Rago I; Sarasua JR; Dowd E; Quinlan LR; Pandit A; Biggs MJ
    Nanomedicine (Lond); 2016 Oct; 11(19):2547-63. PubMed ID: 27618972
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synergistic effects from graphene and carbon nanotubes endow ordered hierarchical structure foams with a combination of compressibility, super-elasticity and stability and potential application as pressure sensors.
    Kuang J; Dai Z; Liu L; Yang Z; Jin M; Zhang Z
    Nanoscale; 2015; 7(20):9252-60. PubMed ID: 25932597
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites.
    Gulotty R; Castellino M; Jagdale P; Tagliaferro A; Balandin AA
    ACS Nano; 2013 Jun; 7(6):5114-21. PubMed ID: 23672711
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tuning the Network Structure in Poly(vinylidene fluoride)/Carbon Nanotube Nanocomposites Using Carbon Black: Toward Improvements of Conductivity and Piezoresistive Sensitivity.
    Ke K; Pötschke P; Wiegand N; Krause B; Voit B
    ACS Appl Mater Interfaces; 2016 Jun; 8(22):14190-9. PubMed ID: 27171017
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A kirigami approach to engineering elasticity in nanocomposites through patterned defects.
    Shyu TC; Damasceno PF; Dodd PM; Lamoureux A; Xu L; Shlian M; Shtein M; Glotzer SC; Kotov NA
    Nat Mater; 2015 Aug; 14(8):785-9. PubMed ID: 26099109
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly doped carbon nanotubes with gold nanoparticles and their influence on electrical conductivity and thermopower of nanocomposites.
    Choi K; Yu C
    PLoS One; 2012; 7(9):e44977. PubMed ID: 23024778
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A highly sensitive NADH sensor based on a mycelium-like nanocomposite using graphene oxide and multi-walled carbon nanotubes to co-immobilize poly(luminol) and poly(neutral red) hybrid films.
    Chiang Lin K; Yu Lai S; Ming Chen S
    Analyst; 2014 Aug; 139(16):3991-8. PubMed ID: 24922539
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication of highly stretchable conductors via morphological control of carbon nanotube network.
    Lin L; Liu S; Fu S; Zhang S; Deng H; Fu Q
    Small; 2013 Nov; 9(21):3620-9. PubMed ID: 23630114
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stretchable elastomer composites with segregated filler networks: effect of carbon nanofiller dimensionality.
    Ke K; Sang Z; Manas-Zloczower I
    Nanoscale Adv; 2019 Jun; 1(6):2337-2347. PubMed ID: 36131959
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carbon nanotube and graphene-based bioinspired electrochemical actuators.
    Kong L; Chen W
    Adv Mater; 2014 Feb; 26(7):1025-43. PubMed ID: 24338697
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioinspired Interface Engineering in Elastomer/Graphene Composites by Constructing Sacrificial Metal-Ligand Bonds.
    Huang J; Tang Z; Yang Z; Guo B
    Macromol Rapid Commun; 2016 Jul; 37(13):1040-5. PubMed ID: 27229634
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.