These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

446 related articles for article (PubMed ID: 26986721)

  • 1. Precision wildlife monitoring using unmanned aerial vehicles.
    Hodgson JC; Baylis SM; Mott R; Herrod A; Clarke RH
    Sci Rep; 2016 Mar; 6():22574. PubMed ID: 26986721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seabird species vary in behavioural response to drone census.
    Brisson-Curadeau É; Bird D; Burke C; Fifield DA; Pace P; Sherley RB; Elliott KH
    Sci Rep; 2017 Dec; 7(1):17884. PubMed ID: 29263372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligence Revolutionizing Wildlife Monitoring and Conservation.
    Gonzalez LF; Montes GA; Puig E; Johnson S; Mengersen K; Gaston KJ
    Sensors (Basel); 2016 Jan; 16(1):. PubMed ID: 26784196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Locating chimpanzee nests and identifying fruiting trees with an unmanned aerial vehicle.
    van Andel AC; Wich SA; Boesch C; Koh LP; Robbins MM; Kelly J; Kuehl HS
    Am J Primatol; 2015 Oct; 77(10):1122-34. PubMed ID: 26179423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Best practice for minimising unmanned aerial vehicle disturbance to wildlife in biological field research.
    Hodgson JC; Koh LP
    Curr Biol; 2016 May; 26(10):R404-5. PubMed ID: 27218843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unmanned aerial vehicles for the assessment and monitoring of environmental contamination: An example from coal ash spills.
    Messinger M; Silman M
    Environ Pollut; 2016 Nov; 218():889-894. PubMed ID: 27522405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unmanned aerial vehicles for surveying marine fauna: assessing detection probability.
    Hodgson A; Peel D; Kelly N
    Ecol Appl; 2017 Jun; 27(4):1253-1267. PubMed ID: 28178755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bears Show a Physiological but Limited Behavioral Response to Unmanned Aerial Vehicles.
    Ditmer MA; Vincent JB; Werden LK; Tanner JC; Laske TG; Iaizzo PA; Garshelis DL; Fieberg JR
    Curr Biol; 2015 Aug; 25(17):2278-83. PubMed ID: 26279232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring of beach litter by automatic interpretation of unmanned aerial vehicle images using the segmentation threshold method.
    Bao Z; Sha J; Li X; Hanchiso T; Shifaw E
    Mar Pollut Bull; 2018 Dec; 137():388-398. PubMed ID: 30503448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review on drone-based harmful algae blooms monitoring.
    Wu D; Li R; Zhang F; Liu J
    Environ Monit Assess; 2019 Mar; 191(4):211. PubMed ID: 30852736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sustainable monitoring coverage of unmanned aerial vehicle photogrammetry according to wing type and image resolution.
    Park S; Lee H; Chon J
    Environ Pollut; 2019 Apr; 247():340-348. PubMed ID: 30690230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting the Health Status of an Unmanned Aerial Vehicles Data-Link System Based on a Bayesian Network.
    Wang X; Guo H; Wang J; Wang L
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30428631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Framework for Agricultural Pest and Disease Monitoring Based on Internet-of-Things and Unmanned Aerial Vehicles.
    Gao D; Sun Q; Hu B; Zhang S
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32182732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated optimization of unmanned aerial vehicle task allocation and path planning under steady wind.
    Luo H; Liang Z; Zhu M; Hu X; Wang G
    PLoS One; 2018; 13(3):e0194690. PubMed ID: 29561888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional investigation of ozone pollution in the lower troposphere using an unmanned aerial vehicle platform.
    Li XB; Wang DS; Lu QC; Peng ZR; Lu SJ; Li B; Li C
    Environ Pollut; 2017 May; 224():107-116. PubMed ID: 28202268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Yield and leaf area index estimations for sunflower plants using unmanned aerial vehicle images.
    Tunca E; Köksal ES; Çetin S; Ekiz NM; Balde H
    Environ Monit Assess; 2018 Oct; 190(11):682. PubMed ID: 30374821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of unmanned aerial vehicles for efficient beach litter monitoring.
    Martin C; Parkes S; Zhang Q; Zhang X; McCabe MF; Duarte CM
    Mar Pollut Bull; 2018 Jun; 131(Pt A):662-673. PubMed ID: 29886994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing UAV-based radiation sensor systems for aerial surveys.
    Lee C; Kim HR
    J Environ Radioact; 2019 Aug; 204():76-85. PubMed ID: 30986718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. UAV remote sensing applications in marine monitoring: Knowledge visualization and review.
    Yang Z; Yu X; Dedman S; Rosso M; Zhu J; Yang J; Xia Y; Tian Y; Zhang G; Wang J
    Sci Total Environ; 2022 Sep; 838(Pt 1):155939. PubMed ID: 35577092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UAV-Based Digital Terrain Model Generation under Leaf-Off Conditions to Support Teak Plantations Inventories in Tropical Dry Forests. A Case of the Coastal Region of Ecuador.
    Aguilar FJ; Rivas JR; Nemmaoui A; Peñalver A; Aguilar MA
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31027155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.