These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 26987117)

  • 21. Individual differences in sensory responses influence decision making by Drosophila melanogaster larvae on exposure to contradictory cues.
    Koseki N; Mori S; Suzuki S; Tonooka Y; Kosugi S; Miyakawa H; Morimoto T
    J Neurogenet; 2016; 30(3-4):288-296. PubMed ID: 27309770
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Azadirachtin induced larval avoidance and antifeeding by disruption of food intake and digestive enzymes in Drosophila melanogaster (Diptera: Drosophilidae).
    Bezzar-Bendjazia R; Kilani-Morakchi S; Maroua F; Aribi N
    Pestic Biochem Physiol; 2017 Nov; 143():135-140. PubMed ID: 29183582
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrical synapses mediate synergism between pheromone and food odors in
    Das S; Trona F; Khallaf MA; Schuh E; Knaden M; Hansson BS; Sachse S
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):E9962-E9971. PubMed ID: 29087946
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dietary salt levels affect salt preference and learning in larval Drosophila.
    Russell C; Wessnitzer J; Young JM; Armstrong JD; Webb B
    PLoS One; 2011; 6(6):e20100. PubMed ID: 21687789
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accelerated hermaphrodite maturation on male pheromones suggests a general principle of coordination between larval behavior and development.
    Faerberg DF; Aprison EZ; Ruvinsky I
    Development; 2024 Jul; 151(13):. PubMed ID: 38975828
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Extended Genotype: Microbially Mediated Olfactory Communication.
    Carthey AJR; Gillings MR; Blumstein DT
    Trends Ecol Evol; 2018 Nov; 33(11):885-894. PubMed ID: 30224089
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Behavioral and Transcriptional Response to Selection for Olfactory Behavior in
    Brown EB; Layne JE; Elchert AR; Rollmann SM
    G3 (Bethesda); 2020 Apr; 10(4):1283-1296. PubMed ID: 32024668
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Behavioral Analysis of Bitter Taste Perception in Drosophila Larvae.
    Kim H; Choi MS; Kang K; Kwon JY
    Chem Senses; 2016 Jan; 41(1):85-94. PubMed ID: 26512069
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Olfactory detection of a bacterial short-chain fatty acid acts as an orexigenic signal in Drosophila melanogaster larvae.
    Depetris-Chauvin A; Galagovsky D; Chevalier C; Maniere G; Grosjean Y
    Sci Rep; 2017 Oct; 7(1):14230. PubMed ID: 29079812
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Larval release behaviors in the Caribbean spiny lobster, Panulirus argus: role of peptide pheromones.
    Ziegler TA; Forward RB
    J Chem Ecol; 2007 Sep; 33(9):1795-805. PubMed ID: 17638056
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Social coercion of larval development in an ant species.
    Villalta I; Amor F; Cerdá X; Boulay R
    Naturwissenschaften; 2016 Apr; 103(3-4):18. PubMed ID: 26874941
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Drosophila DEG/ENaC channel subunit is required for male response to female pheromones.
    Lin H; Mann KJ; Starostina E; Kinser RD; Pikielny CW
    Proc Natl Acad Sci U S A; 2005 Sep; 102(36):12831-6. PubMed ID: 16129837
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Social experience modifies pheromone expression and mating behavior in male Drosophila melanogaster.
    Krupp JJ; Kent C; Billeter JC; Azanchi R; So AK; Schonfeld JA; Smith BP; Lucas C; Levine JD
    Curr Biol; 2008 Sep; 18(18):1373-83. PubMed ID: 18789691
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High amylose starch consumption induces obesity in Drosophila melanogaster and metformin partially prevents accumulation of storage lipids and shortens lifespan of the insects.
    Abrat OB; Storey JM; Storey KB; Lushchak VI
    Comp Biochem Physiol A Mol Integr Physiol; 2018 Jan; 215():55-62. PubMed ID: 29054808
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inter- and intraspecific variation in the response of Drosophila melanogaster and D. simulans to larval cues.
    Hoffmann AA; Parsons PA
    Behav Genet; 1986 Mar; 16(2):295-306. PubMed ID: 3087342
    [No Abstract]   [Full Text] [Related]  

  • 36. Behavioral Response of Aedes aegypti (Diptera: Culicidae) Larvae to Synthetic and Natural Attractants and Repellents.
    Gonzalez PV; González Audino PA; Masuh HM
    J Med Entomol; 2015 Nov; 52(6):1315-21. PubMed ID: 26352935
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Species-specific modulation of food-search behavior by respiration and chemosensation in Drosophila larvae.
    Kim D; Alvarez M; Lechuga LM; Louis M
    Elife; 2017 Sep; 6():. PubMed ID: 28871963
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Attraction and oviposition preferences of Phlebotomus papatasi (Diptera: Psychodidae), vector of Old-World cutaneous leishmaniasis, to larval rearing media.
    Marayati BF; Schal C; Ponnusamy L; Apperson CS; Rowland TE; Wasserberg G
    Parasit Vectors; 2015 Dec; 8():663. PubMed ID: 26714743
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Olfactory learning and behaviour are 'insulated' against visual processing in larval Drosophila.
    Yarali A; Hendel T; Gerber B
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Oct; 192(10):1133-45. PubMed ID: 16830136
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.