BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 26987294)

  • 1. Co-production of acetone and ethanol with molar ratio control enables production of improved gasoline or jet fuel blends.
    Baer ZC; Bormann S; Sreekumar S; Grippo A; Toste FD; Blanch HW; Clark DS
    Biotechnol Bioeng; 2016 Oct; 113(10):2079-87. PubMed ID: 26987294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering Clostridium acetobutylicum for production of kerosene and diesel blendstock precursors.
    Bormann S; Baer ZC; Sreekumar S; Kuchenreuther JM; Dean Toste F; Blanch HW; Clark DS
    Metab Eng; 2014 Sep; 25():124-30. PubMed ID: 25046159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering of Clostridium acetobutylicum ATCC 824 for isopropanol-butanol-ethanol fermentation.
    Lee J; Jang YS; Choi SJ; Im JA; Song H; Cho JH; Seung do Y; Papoutsakis ET; Bennett GN; Lee SY
    Appl Environ Microbiol; 2012 Mar; 78(5):1416-23. PubMed ID: 22210214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic engineering of Clostridium thermocellum DSM1313 for enhanced ethanol production.
    Kannuchamy S; Mukund N; Saleena LM
    BMC Biotechnol; 2016 May; 16 Suppl 1(Suppl 1):34. PubMed ID: 27213504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering Clostridial Aldehyde/Alcohol Dehydrogenase for Selective Butanol Production.
    Cho C; Hong S; Moon HG; Jang YS; Kim D; Lee SY
    mBio; 2019 Jan; 10(1):. PubMed ID: 30670620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient gene knockdown in Clostridium acetobutylicum by synthetic small regulatory RNAs.
    Cho C; Lee SY
    Biotechnol Bioeng; 2017 Feb; 114(2):374-383. PubMed ID: 27531464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering Clostridium acetobutylicum for alcohol production.
    Hou X; Peng W; Xiong L; Huang C; Chen X; Chen X; Zhang W
    J Biotechnol; 2013 Jun; 166(1-2):25-33. PubMed ID: 23651949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aldehyde-alcohol dehydrogenase and/or thiolase overexpression coupled with CoA transferase downregulation lead to higher alcohol titers and selectivity in Clostridium acetobutylicum fermentations.
    Sillers R; Al-Hinai MA; Papoutsakis ET
    Biotechnol Bioeng; 2009 Jan; 102(1):38-49. PubMed ID: 18726959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering of Clostridium acetobutylicum for the enhanced production of isopropanol-butanol-ethanol fuel mixture.
    Jang YS; Malaviya A; Lee J; Im JA; Lee SY; Lee J; Eom MH; Cho JH; Seung do Y
    Biotechnol Prog; 2013; 29(4):1083-8. PubMed ID: 23606675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thiolase engineering for enhanced butanol production in Clostridium acetobutylicum.
    Mann MS; Lütke-Eversloh T
    Biotechnol Bioeng; 2013 Mar; 110(3):887-97. PubMed ID: 23096577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of an acetone-butanol-ethanol mixture from Clostridium acetobutylicum and its conversion to high-value biofuels.
    Sreekumar S; Baer ZC; Pazhamalai A; Gunbas G; Grippo A; Blanch HW; Clark DS; Toste FD
    Nat Protoc; 2015 Mar; 10(3):528-37. PubMed ID: 25719271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of chemical catalysis with extractive fermentation to produce fuels.
    Anbarasan P; Baer ZC; Sreekumar S; Gross E; Binder JB; Blanch HW; Clark DS; Toste FD
    Nature; 2012 Nov; 491(7423):235-9. PubMed ID: 23135469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of Escherichia coli carrying the hybrid acetone-biosynthesis pathway for efficient acetone biosynthesis from acetate.
    Yang H; Huang B; Lai N; Gu Y; Li Z; Ye Q; Wu H
    Microb Cell Fact; 2019 Jan; 18(1):6. PubMed ID: 30642338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of new metabolic engineering tools for Clostridium acetobutylicum.
    Lütke-Eversloh T
    Appl Microbiol Biotechnol; 2014 Jul; 98(13):5823-37. PubMed ID: 24816621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reaction engineering studies of acetone-butanol-ethanol fermentation with Clostridium acetobutylicum.
    Schmidt M; Weuster-Botz D
    Biotechnol J; 2012 May; 7(5):656-61. PubMed ID: 22213682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetone-butanol-ethanol production with high productivity using Clostridium acetobutylicum BKM19.
    Jang YS; Malaviya A; Lee SY
    Biotechnol Bioeng; 2013 Jun; 110(6):1646-53. PubMed ID: 23335317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective production of acetone during continuous synthesis gas fermentation by engineered biocatalyst Clostridium sp. MAceT113.
    Berzin V; Kiriukhin M; Tyurin M
    Lett Appl Microbiol; 2012 Aug; 55(2):149-54. PubMed ID: 22642684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modifying the product pattern of Clostridium acetobutylicum: physiological effects of disrupting the acetate and acetone formation pathways.
    Lehmann D; Hönicke D; Ehrenreich A; Schmidt M; Weuster-Botz D; Bahl H; Lütke-Eversloh T
    Appl Microbiol Biotechnol; 2012 May; 94(3):743-54. PubMed ID: 22246530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New insights into the butyric acid metabolism of Clostridium acetobutylicum.
    Lehmann D; Radomski N; Lütke-Eversloh T
    Appl Microbiol Biotechnol; 2012 Dec; 96(5):1325-39. PubMed ID: 22576943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct fermentation of gelatinized cassava starch to acetone, butanol, and ethanol using Clostridium acetobutylicum mutant obtained by atmospheric and room temperature plasma.
    Li HG; Luo W; Wang Q; Yu XB
    Appl Biochem Biotechnol; 2014 Apr; 172(7):3330-41. PubMed ID: 24519630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.