BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 26987384)

  • 1. Monodisperse polyethylene glycol diacrylate hydrogel microsphere formation by oxygen-controlled photopolymerization in a microfluidic device.
    Krutkramelis K; Xia B; Oakey J
    Lab Chip; 2016 Apr; 16(8):1457-65. PubMed ID: 26987384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen-Purged Microfluidic Device to Enhance Cell Viability in Photopolymerized PEG Hydrogel Microparticles.
    Xia B; Krutkramelis K; Oakey J
    Biomacromolecules; 2016 Jul; 17(7):2459-65. PubMed ID: 27285343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering functional hydrogel microparticle interfaces by controlled oxygen-inhibited photopolymerization.
    Debroy D; Li-Oakey KD; Oakey J
    Colloids Surf B Biointerfaces; 2019 Aug; 180():371-375. PubMed ID: 31079030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile Microfluidic Fabrication of Biocompatible Hydrogel Microspheres in a Novel Microfluidic Device.
    Chen M; Aluunmani R; Bolognesi G; Vladisavljević GT
    Molecules; 2022 Jun; 27(13):. PubMed ID: 35807255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interfacially-mediated oxygen inhibition for precise and continuous poly(ethylene glycol) diacrylate (PEGDA) particle fabrication.
    Debroy D; Oakey J; Li D
    J Colloid Interface Sci; 2018 Jan; 510():334-344. PubMed ID: 28961432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structured Hydrogel Particles With Nanofabricated Interfaces via Controlled Oxygen Inhibition.
    Debroy D; Liu J; Li-Oakey K; Oakey J
    IEEE Trans Nanobioscience; 2019 Apr; 18(2):253-256. PubMed ID: 30892223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A microfluidic-based cell encapsulation platform to achieve high long-term cell viability in photopolymerized PEGNB hydrogel microspheres.
    Jiang Z; Xia B; McBride R; Oakey J
    J Mater Chem B; 2017 Jan; 5(1):173-180. PubMed ID: 28066550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative cytocompatibility of multiple candidate cell types to photoencapsulation in PEGNB/PEGDA macroscale or microscale hydrogels.
    Jiang Z; Jiang K; McBride R; Oakey JS
    Biomed Mater; 2018 Oct; 13(6):065012. PubMed ID: 30191888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of mechanical and biofunctional gradients in PEG diacrylate hydrogels by perfusion-based frontal photopolymerization.
    Turturro MV; Papavasiliou G
    J Biomater Sci Polym Ed; 2012; 23(7):917-39. PubMed ID: 21477459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of a Monolithic Lab-on-a-Chip Platform with Integrated Hydrogel Waveguides for Chemical Sensing.
    Torres-Mapa ML; Singh M; Simon O; Mapa JL; Machida M; Günther A; Roth B; Heinemann D; Terakawa M; Heisterkamp A
    Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31597248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic Chip Device for
    Sheth S; Stealey S; Morgan NY; Zustiak SP
    Langmuir; 2021 Oct; 37(40):11793-11803. PubMed ID: 34597052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crosslinker length dictates step-growth hydrogel network formation dynamics and allows rapid on-chip photoencapsulation.
    Jiang Z; Shaha R; McBride R; Jiang K; Tang M; Xu B; Goroncy AK; Frick C; Oakey J
    Biofabrication; 2020 Apr; 12(3):035006. PubMed ID: 32160605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of Size-controlled Poly (ethylene Glycol) Diacrylate Droplets via Semi-3-Dimensional Flow Focusing Microfluidic Devices.
    Wu Y; Qian X; Mi S; Zhang M; Sun S; Wang X
    J Vis Exp; 2018 Jul; (137):. PubMed ID: 30035768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organoclay-assisted interfacial polymerization for microfluidic production of monodisperse PEG-microdroplets and in situ encapsulation of E. coli.
    Wang KW; Lee KG; Park TJ; Lee YC; Yang JW; Kim DH; Lee SJ; Park JY
    Biotechnol Bioeng; 2012 Jan; 109(1):289-94. PubMed ID: 21809335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing Immunofunctionalization and Cell Capture on Micromolded Hydrogels via Controlled Oxygen-Inhibited Photopolymerization.
    Liu J; Enloe C; Li-Oakey KD; Oakey J
    ACS Appl Bio Mater; 2022 Sep; ():. PubMed ID: 36174120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrophobic-force-driven adsorption of bisphenol A from aqueous solution by polyethylene glycol diacrylate hydrogel microsphere.
    Du H; Shi S; Liu W; Che G; Piao M
    Environ Sci Pollut Res Int; 2019 Aug; 26(22):22362-22371. PubMed ID: 31154646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid monodisperse microencapsulation of single cells.
    Zhang X; Ohta AT; Garmire D
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6518-21. PubMed ID: 21096496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and characterization of cyclic acetal based degradable hydrogels.
    Kaihara S; Matsumura S; Fisher JP
    Eur J Pharm Biopharm; 2008 Jan; 68(1):67-73. PubMed ID: 17888640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Droplet Microfluidics-Based Fabrication of Monodisperse Poly(ethylene glycol)-Fibrinogen Breast Cancer Microspheres for Automated Drug Screening Applications.
    Seeto WJ; Tian Y; Pradhan S; Minond D; Lipke EA
    ACS Biomater Sci Eng; 2022 Sep; 8(9):3831-3841. PubMed ID: 35969206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput double emulsion-based microfluidic production of hydrogel microspheres with tunable chemical functionalities toward biomolecular conjugation.
    Liu EY; Jung S; Weitz DA; Yi H; Choi CH
    Lab Chip; 2018 Jan; 18(2):323-334. PubMed ID: 29242870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.