These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 26987542)

  • 1. Continuous nucleus extraction by optically-induced cell lysis on a batch-type microfluidic platform.
    Huang SH; Hung LY; Lee GB
    Lab Chip; 2016 Apr; 16(8):1447-56. PubMed ID: 26987542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic microfluidic platform for cell separation and nucleus collection.
    Tai CH; Hsiung SK; Chen CY; Tsai ML; Lee GB
    Biomed Microdevices; 2007 Aug; 9(4):533-43. PubMed ID: 17508288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optically induced dielectropheresis sorting with automated medium exchange in an integrated optofluidic device resulting in higher cell viability.
    Lee GB; Wu HC; Yang PF; Mai JD
    Lab Chip; 2014 Aug; 14(15):2837-43. PubMed ID: 24911448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fluorescence in situ hybridization (FISH) microfluidic platform for detection of HER2 amplification in cancer cells.
    Kao KJ; Tai CH; Chang WH; Yeh TS; Chen TC; Lee GB
    Biosens Bioelectron; 2015 Jul; 69():272-9. PubMed ID: 25770459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extraction of Cell-Free Whole Blood Plasma Using a Dielectrophoresis-Based Microfluidic Device.
    Yang F; Zhang Y; Cui X; Fan Y; Xue Y; Miao H; Li G
    Biotechnol J; 2019 Mar; 14(3):e1800181. PubMed ID: 29952079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integratable microfluidic cartridge for forensic swab samples lysis.
    Yang J; Brooks C; Estes MD; Hurth CM; Zenhausern F
    Forensic Sci Int Genet; 2014 Jan; 8(1):147-58. PubMed ID: 24315603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-chip lysis of mammalian cells through a handheld corona device.
    Escobedo C; Bürgel SC; Kemmerling S; Sauter N; Braun T; Hierlemann A
    Lab Chip; 2015 Jul; 15(14):2990-7. PubMed ID: 26055165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-purity and label-free isolation of circulating tumor cells (CTCs) in a microfluidic platform by using optically-induced-dielectrophoretic (ODEP) force.
    Huang SB; Wu MH; Lin YH; Hsieh CH; Yang CL; Lin HC; Tseng CP; Lee GB
    Lab Chip; 2013 Apr; 13(7):1371-83. PubMed ID: 23389102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a microfluidic device for cell concentration and blood cell-plasma separation.
    Maria MS; Kumar BS; Chandra TS; Sen AK
    Biomed Microdevices; 2015 Dec; 17(6):115. PubMed ID: 26564448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic cell fusion via optically-induced dielectrophoresis and optically-induced locally-enhanced electric field on a microfluidic chip.
    Hsiao YC; Wang CH; Lee WB; Lee GB
    Biomicrofluidics; 2018 May; 12(3):034108. PubMed ID: 29861811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inertial microfluidic cube for automatic and fast extraction of white blood cells from whole blood.
    Zhu S; Wu D; Han Y; Wang C; Xiang N; Ni Z
    Lab Chip; 2020 Jan; 20(2):244-252. PubMed ID: 31833515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A microfluidic approach for high efficiency extraction of low molecular weight RNA.
    Vulto P; Dame G; Maier U; Makohliso S; Podszun S; Zahn P; Urban GA
    Lab Chip; 2010 Mar; 10(5):610-6. PubMed ID: 20162236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and recovery of extracellular vesicles using optically-induced dielectrophoresis on an integrated microfluidic platform.
    Chen YS; Lai CP; Chen C; Lee GB
    Lab Chip; 2021 Apr; 21(8):1475-1483. PubMed ID: 33730143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-voltage electrical cell lysis using a microfluidic device.
    Wei XY; Li JH; Wang L; Yang F
    Biomed Microdevices; 2019 Feb; 21(1):22. PubMed ID: 30790126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous microfluidic DNA extraction using phase-transfer magnetophoresis.
    Karle M; Miwa J; Czilwik G; Auwärter V; Roth G; Zengerle R; von Stetten F
    Lab Chip; 2010 Dec; 10(23):3284-90. PubMed ID: 20938545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A solvent resistant lab-on-chip platform for radiochemistry applications.
    Rensch C; Lindner S; Salvamoser R; Leidner S; Böld C; Samper V; Taylor D; Baller M; Riese S; Bartenstein P; Wängler C; Wängler B
    Lab Chip; 2014 Jul; 14(14):2556-64. PubMed ID: 24879121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic-bead-based microfluidic system for ribonucleic acid extraction and reverse transcription processes.
    Liu CJ; Lien KY; Weng CY; Shin JW; Chang TY; Lee GB
    Biomed Microdevices; 2009 Apr; 11(2):339-50. PubMed ID: 19034667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and Simulation of an Integrated Centrifugal Microfluidic Device for CTCs Separation and Cell Lysis.
    Nasiri R; Shamloo A; Akbari J; Tebon P; R Dokmeci M; Ahadian S
    Micromachines (Basel); 2020 Jul; 11(7):. PubMed ID: 32698447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A microfluidic device for continuous white blood cell separation and lysis from whole blood.
    Kim M; Mo Jung S; Lee KH; Jun Kang Y; Yang S
    Artif Organs; 2010 Nov; 34(11):996-1002. PubMed ID: 21092042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effect of Optically Induced Dielectrophoresis (ODEP)-Based Cell Manipulation in a Microfluidic System on the Properties of Biological Cells.
    Chu PY; Hsieh CH; Lin CR; Wu MH
    Biosensors (Basel); 2020 Jun; 10(6):. PubMed ID: 32560153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.