These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 26987550)

  • 1. Enzyme classification using complex dynamic hemithioacetal systems.
    Zhang Y; Jayawardena HS; Yan M; Ramström O
    Chem Commun (Camb); 2016 Apr; 52(28):5053-6. PubMed ID: 26987550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double parallel dynamic resolution through lipase-catalyzed asymmetric transformation.
    Zhang Y; Hu L; Ramström O
    Chem Commun (Camb); 2013 Mar; 49(18):1805-7. PubMed ID: 23348957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ evaluation of lipase performances through dynamic asymmetric cyanohydrin resolution.
    Sakulsombat M; Vongvilai P; Ramström O
    Org Biomol Chem; 2011 Feb; 9(4):1112-7. PubMed ID: 21170452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic asymmetric hemithioacetal transformation by lipase-catalyzed γ-lactonization: in situ tandem formation of 1,3-oxathiolan-5-one derivatives.
    Sakulsombat M; Zhang Y; Ramström O
    Chemistry; 2012 May; 18(20):6129-32. PubMed ID: 22473668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulating the activity of avian pancreatic lipases by an alkyl chain reacting with an accessible sulfhydryl group.
    Fendri A; Frikha F; Miled N; Ben Bacha A; Gargouri Y
    Biochem Biophys Res Commun; 2007 Sep; 360(4):765-71. PubMed ID: 17624306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipase assays for conventional and molecular screening: an overview.
    Gupta R; Rathi P; Gupta N; Bradoo S
    Biotechnol Appl Biochem; 2003 Feb; 37(Pt 1):63-71. PubMed ID: 12578553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Candida rugosa lipase immobilization on hydrophilic charged gold nanoparticles as promising biocatalysts: Activity and stability investigations.
    Venditti I; Palocci C; Chronopoulou L; Fratoddi I; Fontana L; Diociaiuti M; Russo MV
    Colloids Surf B Biointerfaces; 2015 Jul; 131():93-101. PubMed ID: 25969418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating the influence of the interface in thiol-functionalized silver-gold nanoshells over lipase activity.
    Kisukuri CM; Macedo A; Oliveira CC; Camargo PH; Andrade LH
    Langmuir; 2013 Dec; 29(51):15974-80. PubMed ID: 24313296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipase-catalyzed cellulose acetylation in aqueous and organic media.
    Yang K; Wang YJ
    Biotechnol Prog; 2003; 19(6):1664-71. PubMed ID: 14656139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic resolution of rac-1-phenylethanol with immobilized lipases: a critical comparison of microwave and conventional heating protocols.
    de Souza RO; Antunes OA; Kroutil W; Kappe CO
    J Org Chem; 2009 Aug; 74(16):6157-62. PubMed ID: 19601570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immobilization of lipases in hydrophobic chitosan for selective hydrolysis of fish oil: The impact of support functionalization on lipase activity, selectivity and stability.
    Urrutia P; Arrieta R; Alvarez L; Cardenas C; Mesa M; Wilson L
    Int J Biol Macromol; 2018 Mar; 108():674-686. PubMed ID: 29246872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the active-site of a rationally redesigned lipase for catalysis of Michael-type additions.
    Carlqvist P; Svedendahl M; Branneby C; Hult K; Brinck T; Berglund P
    Chembiochem; 2005 Feb; 6(2):331-6. PubMed ID: 15578634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Template-based modeling of a psychrophilic lipase: conformational changes, novel structural features and its application in predicting the enantioselectivity of lipase catalyzed transesterification of secondary alcohols.
    Xu T; Gao B; Zhang L; Lin J; Wang X; Wei D
    Biochim Biophys Acta; 2010 Dec; 1804(12):2183-90. PubMed ID: 20828637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toluene promotes lid 2 interfacial activation of cold active solvent tolerant lipase from Pseudomonas fluorescens strain AMS8.
    Yaacob N; Mohamad Ali MS; Salleh AB; Rahman RNZRA; Leow ATC
    J Mol Graph Model; 2016 Jul; 68():224-235. PubMed ID: 27474867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Advances in Lipase-Mediated Preparation of Pharmaceuticals and Their Intermediates.
    Carvalho AC; Fonseca Tde S; de Mattos MC; de Oliveira Mda C; de Lemos TL; Molinari F; Romano D; Serra I
    Int J Mol Sci; 2015 Dec; 16(12):29682-716. PubMed ID: 26690428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial lipases.
    Jaeger KE; Ransac S; Dijkstra BW; Colson C; van Heuvel M; Misset O
    FEMS Microbiol Rev; 1994 Sep; 15(1):29-63. PubMed ID: 7946464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterologous expression of lipases YLIP4, YLIP5, YLIP7, YLIP13, and YLIP15 from Yarrowia lipolytica MSR80 in Escherichia coli: Substrate specificity, kinetic comparison, and enantioselectivity.
    Syal P; Gupta R
    Biotechnol Appl Biochem; 2017 Nov; 64(6):851-861. PubMed ID: 27775845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relation of metals and -SH groups to the activity of pancreatic lipase.
    WILLS ED
    Biochim Biophys Acta; 1960 Jun; 40():481-90. PubMed ID: 13845002
    [No Abstract]   [Full Text] [Related]  

  • 19. Stereoselectivity of the generation of 3-mercaptohexanal and 3-mercaptohexanol by lipase-catalyzed hydrolysis of 3-acetylthioesters.
    Wakabayashi H; Wakabayashi M; Eisenreich W; Engel KH
    J Agric Food Chem; 2003 Jul; 51(15):4349-55. PubMed ID: 12848509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly regioselective synthesis of 3'-O-acyl-trifluridines catalyzed by Pseudomonas cepacia lipase.
    Wang ZY; Bi YH; Zong MH
    Appl Biochem Biotechnol; 2011 Nov; 165(5-6):1161-8. PubMed ID: 21822657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.