These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 26987736)
1. Copper and cobalt recovery from pyrite ashes of a sulphuric acid plant. Erust C; Akcil A Waste Manag Res; 2016 Jun; 34(6):527-33. PubMed ID: 26987736 [TBL] [Abstract][Full Text] [Related]
2. Recovery of copper and cobalt from ancient slag. Bulut G Waste Manag Res; 2006 Apr; 24(2):118-24. PubMed ID: 16634226 [TBL] [Abstract][Full Text] [Related]
3. Processing of copper converter slag for metal reclamation. Part I: Extraction and recovery of copper and cobalt. Deng T; Ling Y Waste Manag Res; 2007 Oct; 25(5):440-8. PubMed ID: 17985669 [TBL] [Abstract][Full Text] [Related]
4. A study on the structural behavior of reduced pyrite ash pellets by XRD and XRF analysis. Tugrul N; Derun EM; Piskin MB; Ekerim A Waste Manag Res; 2009 May; 27(3):281-7. PubMed ID: 19443647 [TBL] [Abstract][Full Text] [Related]
5. Effects of calcium hydroxide and calcium chloride addition to bentonite in iron ore pelletization. Tugrul N; Derun EM; Pişkin M Waste Manag Res; 2006 Oct; 24(5):446-55. PubMed ID: 17121116 [TBL] [Abstract][Full Text] [Related]
6. Synergistic effect of biogenic Fe Panda S; Akcil A; Mishra S; Erust C J Hazard Mater; 2017 Mar; 325():59-70. PubMed ID: 27915100 [TBL] [Abstract][Full Text] [Related]
7. Processing of copper converter slag for metals reclamation: Part II: mineralogical study. Deng T; Ling Y Waste Manag Res; 2004 Oct; 22(5):376-82. PubMed ID: 15560442 [TBL] [Abstract][Full Text] [Related]
8. Trace element transformations and partitioning during the roasting of pyrite ores in the sulfuric acid industry. Yang C; Chen Y; Peng P; Li C; Chang X; Wu Y J Hazard Mater; 2009 Aug; 167(1-3):835-45. PubMed ID: 19261379 [TBL] [Abstract][Full Text] [Related]
9. Composition and risk assessment of roasted pyrite ash from fertiliser production. Gabarrón M; Babur O; Soriano-Disla JM; Faz A; Acosta JA Chemosphere; 2018 Oct; 209():277-285. PubMed ID: 29933164 [TBL] [Abstract][Full Text] [Related]
10. Potential use of pyrite cinders as raw material in cement production: results of industrial scale trial operations. Alp I; Deveci H; Yazici EY; Türk T; Süngün YH J Hazard Mater; 2009 Jul; 166(1):144-9. PubMed ID: 19100685 [TBL] [Abstract][Full Text] [Related]
11. The leaching behavior of copper and iron recovery from reduction roasting pyrite cinder. Zhang H; Chen G; Cai X; Fu J; Liu M; Zhang P; Yu H J Hazard Mater; 2021 Oct; 420():126561. PubMed ID: 34252668 [TBL] [Abstract][Full Text] [Related]
13. Galvanic sludge metals recovery by pyrometallurgical and hydrometallurgical treatment. Rossini G; Bernardes AM J Hazard Mater; 2006 Apr; 131(1-3):210-6. PubMed ID: 16297539 [TBL] [Abstract][Full Text] [Related]
14. Selective leaching process for the recovery of copper and zinc oxide from copper-containing dust. Wu JY; Chang FC; Wang HP; Tsai MJ; Ko CH; Chen CC Environ Technol; 2015; 36(23):2952-8. PubMed ID: 25191877 [TBL] [Abstract][Full Text] [Related]
15. Leaching of valuable elements from thermal power plant bottom ash using a thermo-hydrometallurgical process. Bojinova D; Teodosieva R Waste Manag Res; 2016 Jun; 34(6):511-7. PubMed ID: 26951342 [TBL] [Abstract][Full Text] [Related]
16. Investigation of the possibility of copper recovery from the flotation tailings by acid leaching. Antonijević MM; Dimitrijević MD; Stevanović ZO; Serbula SM; Bogdanovic GD J Hazard Mater; 2008 Oct; 158(1):23-34. PubMed ID: 18329798 [TBL] [Abstract][Full Text] [Related]
17. An advanced study on the hydrometallurgical processing of waste computer printed circuit boards to extract their valuable content of metals. Birloaga I; Coman V; Kopacek B; Vegliò F Waste Manag; 2014 Dec; 34(12):2581-6. PubMed ID: 25242605 [TBL] [Abstract][Full Text] [Related]
18. Selective removal of cobalt and copper from Fe (III)-enriched high-pressure acid leach residue using the hybrid bioleaching technique. Liu R; Mao Z; Liu W; Wang Y; Cheng H; Zhou H; Zhao K J Hazard Mater; 2020 Feb; 384():121462. PubMed ID: 31694776 [TBL] [Abstract][Full Text] [Related]
19. Chemistry and phase evolution during roasting of toxic thallium-bearing pyrite. Lopez-Arce P; Garcia-Guinea J; Garrido F Chemosphere; 2017 Aug; 181():447-460. PubMed ID: 28458220 [TBL] [Abstract][Full Text] [Related]
20. Recovery of valuable metals from electronic and galvanic industrial wastes by leaching and electrowinning. Vegliò F; Quaresima R; Fornari P; Ubaldini S Waste Manag; 2003; 23(3):245-52. PubMed ID: 12737966 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]