BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 26987796)

  • 1. The nematode Caenorhabditis elegans as a tool to predict chemical activity on mammalian development and identify mechanisms influencing toxicological outcome.
    Harlow PH; Perry SJ; Widdison S; Daniels S; Bondo E; Lamberth C; Currie RA; Flemming AJ
    Sci Rep; 2016 Mar; 6():22965. PubMed ID: 26987796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative metabolism of xenobiotic chemicals by cytochrome P450s in the nematode Caenorhabditis elegans.
    Harlow PH; Perry SJ; Stevens AJ; Flemming AJ
    Sci Rep; 2018 Sep; 8(1):13333. PubMed ID: 30190484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyp35a2 gene expression is involved in toxicity of fenitrothion in the soil nematode Caenorhabditis elegans.
    Roh JY; Choi J
    Chemosphere; 2011 Sep; 84(10):1356-61. PubMed ID: 21658740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytochrome P450-dependent metabolism of eicosapentaenoic acid in the nematode Caenorhabditis elegans.
    Kulas J; Schmidt C; Rothe M; Schunck WH; Menzel R
    Arch Biochem Biophys; 2008 Apr; 472(1):65-75. PubMed ID: 18282462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eicosanoid formation by a cytochrome P450 isoform expressed in the pharynx of Caenorhabditis elegans.
    Kosel M; Wild W; Bell A; Rothe M; Lindschau C; Steinberg CE; Schunck WH; Menzel R
    Biochem J; 2011 May; 435(3):689-700. PubMed ID: 21309752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. C. elegans as a model in developmental neurotoxicology.
    Ruszkiewicz JA; Pinkas A; Miah MR; Weitz RL; Lawes MJA; Akinyemi AJ; Ijomone OM; Aschner M
    Toxicol Appl Pharmacol; 2018 Sep; 354():126-135. PubMed ID: 29550512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toxicity and metabolism of 3-bromopyruvate in Caenorhabditis elegans.
    Gu QL; Zhang Y; Fu XM; Lu ZL; Yu Y; Chen G; Ma R; Kou W; Lan YM
    J Zhejiang Univ Sci B; 2020 Jan.; 21(1):77-86. PubMed ID: 31898444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two cytochrome P450s in Caenorhabditis elegans are essential for the organization of eggshell, correct execution of meiosis and the polarization of embryo.
    Benenati G; Penkov S; Müller-Reichert T; Entchev EV; Kurzchalia TV
    Mech Dev; 2009; 126(5-6):382-93. PubMed ID: 19368796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CYP35 family in Caenorhabditis elegans biological processes: fatty acid synthesis, xenobiotic metabolism, and stress responses.
    Lim SYM; Alshagga M; Kong C; Alshawsh MA; Alshehade SA; Pan Y
    Arch Toxicol; 2022 Dec; 96(12):3163-3174. PubMed ID: 36175686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Caenorhabditis elegans as model system for rapid toxicity assessment of pharmaceutical compounds.
    Dengg M; van Meel JC
    J Pharmacol Toxicol Methods; 2004; 50(3):209-14. PubMed ID: 15519907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of nicotinic receptors uncouples a developmental timer from the molting timer in C. elegans.
    Ruaud AF; Bessereau JL
    Development; 2006 Jun; 133(11):2211-22. PubMed ID: 16672334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NHR-176 regulates cyp-35d1 to control hydroxylation-dependent metabolism of thiabendazole in Caenorhabditis elegans.
    Jones LM; Flemming AJ; Urwin PE
    Biochem J; 2015 Feb; 466(1):37-44. PubMed ID: 25406993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Approaches to Anesthetic Mechanisms: The C. elegans Model.
    Steele LM; Sedensky MM
    Methods Enzymol; 2018; 602():133-151. PubMed ID: 29588026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxicity testing of neurotoxic pesticides in Caenorhabditis elegans.
    Meyer D; Williams PL
    J Toxicol Environ Health B Crit Rev; 2014; 17(5):284-306. PubMed ID: 25205216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in the expression of cyp35a family genes in the soil nematode Caenorhabditis elegans under controlled exposure to chlorpyrifos using passive dosing.
    Roh JY; Lee H; Kwon JH
    Environ Sci Technol; 2014 Sep; 48(17):10475-81. PubMed ID: 25122055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A steroid hormone that extends the lifespan of Caenorhabditis elegans.
    Broué F; Liere P; Kenyon C; Baulieu EE
    Aging Cell; 2007 Feb; 6(1):87-94. PubMed ID: 17266678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental Effects of the ToxCast™ Phase I and Phase II Chemicals in Caenorhabditis elegans and Corresponding Responses in Zebrafish, Rats, and Rabbits.
    Boyd WA; Smith MV; Co CA; Pirone JR; Rice JR; Shockley KR; Freedman JH
    Environ Health Perspect; 2016 May; 124(5):586-93. PubMed ID: 26496690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Caffeine induces high expression of cyp-35A family genes and inhibits the early larval development in Caenorhabditis elegans.
    Min H; Kawasaki I; Gong J; Shim YH
    Mol Cells; 2015 Mar; 38(3):236-42. PubMed ID: 25591395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A circulatory transcriptional regulation among daf-9, daf-12, and daf-16 mediates larval development upon cholesterol starvation in Caenorhabditis elegans.
    Jeong MH; Kawasaki I; Shim YH
    Dev Dyn; 2010 Jul; 239(7):1931-40. PubMed ID: 20549717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CYP35: xenobiotically induced gene expression in the nematode Caenorhabditis elegans.
    Menzel R; Rödel M; Kulas J; Steinberg CE
    Arch Biochem Biophys; 2005 Jun; 438(1):93-102. PubMed ID: 15910738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.