BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 26988155)

  • 1. The molecular mechanisms of calpains action on skeletal muscle atrophy.
    Huang J; Zhu X
    Physiol Res; 2016 Nov; 65(4):547-560. PubMed ID: 26988155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calpain-dependent regulation of the skeletal muscle atrophy following unloading.
    Shenkman BS; Belova SP; Lomonosova YN; Kostrominova TY; Nemirovskaya TL
    Arch Biochem Biophys; 2015 Oct; 584():36-41. PubMed ID: 26297661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calpain activation causes a proteasome-dependent increase in protein degradation and inhibits the Akt signalling pathway in rat diaphragm muscle.
    Smith IJ; Dodd SL
    Exp Physiol; 2007 May; 92(3):561-73. PubMed ID: 17272355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular signaling pathways regulating muscle proteolysis during atrophy.
    Franch HA; Price SR
    Curr Opin Clin Nutr Metab Care; 2005 May; 8(3):271-5. PubMed ID: 15809529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Role of Calpains in Skeletal Muscle Remodeling with Exercise and Inactivity-induced Atrophy.
    Hyatt HW; Powers SK
    Int J Sports Med; 2020 Dec; 41(14):994-1008. PubMed ID: 32679598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphodiesterase 4 inhibition restrains muscle proteolysis in diabetic rats by activating PKA and EPAC/Akt effectors and inhibiting FoxO factors.
    Arcaro CA; Assis RP; Oliveira JO; Zanon NM; Paula-Gomes S; Navegantes LCC; Kettelhut IC; Brunetti IL; Baviera AM
    Life Sci; 2021 Aug; 278():119563. PubMed ID: 33930364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insulin resistance accelerates muscle protein degradation: Activation of the ubiquitin-proteasome pathway by defects in muscle cell signaling.
    Wang X; Hu Z; Hu J; Du J; Mitch WE
    Endocrinology; 2006 Sep; 147(9):4160-8. PubMed ID: 16777975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein translation, proteolysis and autophagy in human skeletal muscle atrophy after spinal cord injury.
    Lundell LS; Savikj M; Kostovski E; Iversen PO; Zierath JR; Krook A; Chibalin AV; Widegren U
    Acta Physiol (Oxf); 2018 Jul; 223(3):e13051. PubMed ID: 29423932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calpain and caspase-3 play required roles in immobilization-induced limb muscle atrophy.
    Talbert EE; Smuder AJ; Min K; Kwon OS; Powers SK
    J Appl Physiol (1985); 2013 May; 114(10):1482-9. PubMed ID: 23471945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clenbuterol suppresses proteasomal and lysosomal proteolysis and atrophy-related genes in denervated rat soleus muscles independently of Akt.
    Gonçalves DA; Silveira WA; Lira EC; Graça FA; Paula-Gomes S; Zanon NM; Kettelhut IC; Navegantes LC
    Am J Physiol Endocrinol Metab; 2012 Jan; 302(1):E123-33. PubMed ID: 21952035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitin-proteasome.
    Sandri M
    Int J Biochem Cell Biol; 2013 Oct; 45(10):2121-9. PubMed ID: 23665154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of cAMP/EPAC/Akt signaling in the antiproteolytic effects of pentoxifylline on skeletal muscles of diabetic rats.
    Arcaro CA; Assis RP; Zanon NM; Paula-Gomes S; Navegantes LCC; Kettelhut IC; Brunetti IL; Baviera AM
    J Appl Physiol (1985); 2018 Mar; 124(3):704-716. PubMed ID: 29357512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular and molecular mechanisms of muscle atrophy.
    Bonaldo P; Sandri M
    Dis Model Mech; 2013 Jan; 6(1):25-39. PubMed ID: 23268536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transgenic overexpression of locally acting insulin-like growth factor-1 inhibits ubiquitin-mediated muscle atrophy in chronic left-ventricular dysfunction.
    Schulze PC; Fang J; Kassik KA; Gannon J; Cupesi M; MacGillivray C; Lee RT; Rosenthal N
    Circ Res; 2005 Sep; 97(5):418-26. PubMed ID: 16051886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential localization of autolyzed calpains 1 and 2 in slow and fast skeletal muscles in the early phase of atrophy.
    Vermaelen M; Sirvent P; Raynaud F; Astier C; Mercier J; Lacampagne A; Cazorla O
    Am J Physiol Cell Physiol; 2007 May; 292(5):C1723-31. PubMed ID: 17182728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calpains in muscle wasting.
    Bartoli M; Richard I
    Int J Biochem Cell Biol; 2005 Oct; 37(10):2115-33. PubMed ID: 16125114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphodiesterase-4 inhibition reduces proteolysis and atrogenes expression in rat skeletal muscles.
    Lira EC; Gonçalves DA; Parreiras-E-Silva LT; Zanon NM; Kettelhut IC; Navegantes LC
    Muscle Nerve; 2011 Sep; 44(3):371-81. PubMed ID: 21996797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chronic hypobaric hypoxia mediated skeletal muscle atrophy: role of ubiquitin-proteasome pathway and calpains.
    Chaudhary P; Suryakumar G; Prasad R; Singh SN; Ali S; Ilavazhagan G
    Mol Cell Biochem; 2012 May; 364(1-2):101-13. PubMed ID: 22215202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ubiquitin proteasome system in atrophying skeletal muscle: roles and regulation.
    Bilodeau PA; Coyne ES; Wing SS
    Am J Physiol Cell Physiol; 2016 Sep; 311(3):C392-403. PubMed ID: 27510905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activating cAMP/PKA signaling in skeletal muscle suppresses the ubiquitin-proteasome-dependent proteolysis: implications for sympathetic regulation.
    Silveira WA; Gonçalves DA; Graça FA; Andrade-Lopes AL; Bergantin LB; Zanon NM; Godinho RO; Kettelhut IC; Navegantes LC
    J Appl Physiol (1985); 2014 Jul; 117(1):11-9. PubMed ID: 24833777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.