These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 26989774)

  • 21. Adsorption and Diffusion of Fluids in Defective Carbon Nanotubes: Insights from Molecular Simulations.
    Bucior BJ; Kolmakov GV; Male JM; Liu J; Chen DL; Kumar P; Johnson JK
    Langmuir; 2017 Oct; 33(42):11834-11844. PubMed ID: 28915730
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Imaging active topological defects in carbon nanotubes.
    Suenaga K; Wakabayashi H; Koshino M; Sato Y; Urita K; Iijima S
    Nat Nanotechnol; 2007 Jun; 2(6):358-60. PubMed ID: 18654307
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Continuous spinning of a single-walled carbon nanotube-nylon composite fiber.
    Gao J; Itkis ME; Yu A; Bekyarova E; Zhao B; Haddon RC
    J Am Chem Soc; 2005 Mar; 127(11):3847-54. PubMed ID: 15771520
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Numerical Investigation of the Fracture Properties of Pre-Cracked Monocrystalline/Polycrystalline Graphene Sheets.
    Li X; Guo J
    Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30650573
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Large-scale fabrication of aligned single-walled carbon nanotube array and hierarchical single-walled carbon nanotube assembly.
    Gao J; Yu A; Itkis ME; Bekyarova E; Zhao B; Niyogi S; Haddon RC
    J Am Chem Soc; 2004 Dec; 126(51):16698-9. PubMed ID: 15612688
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identifying and counting point defects in carbon nanotubes.
    Fan Y; Goldsmith BR; Collins PG
    Nat Mater; 2005 Dec; 4(12):906-11. PubMed ID: 16267574
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aqueous dispersion, surface thiolation, and direct self-assembly of carbon nanotubes on gold.
    Kocharova N; Aäritalo T; Leiro J; Kankare J; Lukkari J
    Langmuir; 2007 Mar; 23(6):3363-71. PubMed ID: 17291020
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computational studies of catalyst-free single walled carbon nanotube growth.
    Haghighatpanah S; Mohsenzadeh A; Amara H; Bichara C; Bolton K
    J Chem Phys; 2013 Aug; 139(5):054308. PubMed ID: 23927263
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative theory of adsorptive separation for the electronic sorting of single-walled carbon nanotubes.
    Jain RM; Tvrdy K; Han R; Ulissi Z; Strano MS
    ACS Nano; 2014 Apr; 8(4):3367-79. PubMed ID: 24606316
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chemical engineering of the single-walled carbon nanotube-nylon 6 interface.
    Gao J; Zhao B; Itkis ME; Bekyarova E; Hu H; Kranak V; Yu A; Haddon RC
    J Am Chem Soc; 2006 Jun; 128(23):7492-6. PubMed ID: 16756303
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel structure for carbon nanotube reinforced alumina composites with improved mechanical properties.
    Yamamoto G; Omori M; Hashida T; Kimura H
    Nanotechnology; 2008 Aug; 19(31):315708. PubMed ID: 21828800
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanisms of single-walled carbon nanotube nucleation, growth, and healing determined using QM/MD methods.
    Page AJ; Ohta Y; Irle S; Morokuma K
    Acc Chem Res; 2010 Oct; 43(10):1375-85. PubMed ID: 20954752
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Toughening Graphene by Integrating Carbon Nanotubes.
    Hacopian EF; Yang Y; Ni B; Li Y; Li X; Chen Q; Guo H; Tour JM; Gao H; Lou J
    ACS Nano; 2018 Aug; 12(8):7901-7910. PubMed ID: 30051705
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deformation of single-walled carbon nanotubes by interaction with graphene: a first-principles study.
    Wang X; Yang J; Li R; Jiang H; Li Y
    J Comput Chem; 2015 Apr; 36(10):717-22. PubMed ID: 25689637
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of STW defects on the mechanical properties and fracture toughness of pristine and hydrogenated graphene.
    Verma A; Parashar A
    Phys Chem Chem Phys; 2017 Jun; 19(24):16023-16037. PubMed ID: 28594005
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Definitive engineering strength and fracture toughness of graphene through on-chip nanomechanics.
    Jaddi S; Malik MW; Wang B; Pugno NM; Zeng Y; Coulombier M; Raskin JP; Pardoen T
    Nat Commun; 2024 Jul; 15(1):5863. PubMed ID: 38997272
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Facile Isolation of Adsorbent-Free Long and Highly-Pure Chirality-Selected Semiconducting Single-Walled Carbon Nanotubes Using A Hydrogen-bonding Supramolecular Polymer.
    Toshimitsu F; Nakashima N
    Sci Rep; 2015 Dec; 5():18066. PubMed ID: 26658356
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Charge transfer at junctions of a single layer of graphene and a metallic single walled carbon nanotube.
    Paulus GL; Wang QH; Ulissi ZW; McNicholas TP; Vijayaraghavan A; Shih CJ; Jin Z; Strano MS
    Small; 2013 Jun; 9(11):1954-63. PubMed ID: 23281165
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contact-damage-resistant ceramic/single-wall carbon nanotubes and ceramic/graphite composites.
    Wang X; Padture NP; Tanaka H
    Nat Mater; 2004 Aug; 3(8):539-44. PubMed ID: 15258573
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rational concept to recognize/extract single-walled carbon nanotubes with a specific chirality.
    Ozawa H; Fujigaya T; Niidome Y; Hotta N; Fujiki M; Nakashima N
    J Am Chem Soc; 2011 Mar; 133(8):2651-7. PubMed ID: 21291252
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.