These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 26989774)

  • 41. Templated Synthesis of Single-Walled Carbon Nanotubes with Specific Structure.
    Yang F; Wang X; Li M; Liu X; Zhao X; Zhang D; Zhang Y; Yang J; Li Y
    Acc Chem Res; 2016 Apr; 49(4):606-15. PubMed ID: 26999451
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Investigation on Mode I Fracture Toughness of Woven Carbon Fiber-Reinforced Polymer Composites Incorporating Nanomaterials.
    Truong GT; Tran HV; Choi KK
    Polymers (Basel); 2020 Oct; 12(11):. PubMed ID: 33126614
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Probing Electronic Doping of Single-Walled Carbon Nanotubes by Gaseous Ammonia with Dielectric Force Microscopy.
    Zhang J; Lu W; Li YS; Lu D; Zhang T; Wang X; Chen L
    J Phys Chem Lett; 2012 Dec; 3(23):3509-12. PubMed ID: 26290980
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interfacial shear stress between single-walled carbon nanotubes and gold surfaces with and without an alkanethiol monolayer.
    Pan H; Wu YC; Adams GG; Miller GP; McGruer NE
    J Colloid Interface Sci; 2013 Oct; 407():133-9. PubMed ID: 23906860
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Optical properties of ultrashort semiconducting single-walled carbon nanotube capsules down to sub-10 nm.
    Sun X; Zaric S; Daranciang D; Welsher K; Lu Y; Li X; Dai H
    J Am Chem Soc; 2008 May; 130(20):6551-5. PubMed ID: 18426207
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Estimating the lower-limit of fracture toughness from ideal-strength calculations.
    Borgsmiller L; Agne MT; Male JP; Anand S; Li G; Morozov SI; Snyder GJ
    Mater Horiz; 2022 Feb; 9(2):825-834. PubMed ID: 34913452
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Laser-induced nanoscale thermocapillary flow for purification of aligned arrays of single-walled carbon nanotubes.
    Du F; Felts JR; Xie X; Song J; Li Y; Rosenberger MR; Islam AE; Jin SH; Dunham SN; Zhang C; Wilson WL; Huang Y; King WP; Rogers JA
    ACS Nano; 2014 Dec; 8(12):12641-9. PubMed ID: 25495504
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Solvent-free preparation of high-toughness epoxy--SWNT composite materials.
    González-Domínguez JM; Ansón-Casaos A; Díez-Pascual AM; Ashrafi B; Naffakh M; Backman D; Stadler H; Johnston A; Gómez M; Martínez MT
    ACS Appl Mater Interfaces; 2011 May; 3(5):1441-50. PubMed ID: 21495713
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evaluation of a high fracture toughness composite ceramic for dental applications.
    Aboushelib MN; Kleverlaan CJ; Feilzer AJ
    J Prosthodont; 2008 Oct; 17(7):538-44. PubMed ID: 18761572
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Numerical Investigation of the Fracture Mechanism of Defective Graphene Sheets.
    Fan N; Ren Z; Jing G; Guo J; Peng B; Jiang H
    Materials (Basel); 2017 Feb; 10(2):. PubMed ID: 28772525
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Assessment of chemically separated carbon nanotubes for nanoelectronics.
    Zhang L; Zaric S; Tu X; Wang X; Zhao W; Dai H
    J Am Chem Soc; 2008 Feb; 130(8):2686-91. PubMed ID: 18251484
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Quantification of Nitric Oxide Concentration Using Single-Walled Carbon Nanotube Sensors.
    Meier J; Stapleton J; Hofferber E; Haworth A; Kachman S; Iverson NM
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33477618
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Integrated Ternary Bioinspired Nanocomposites via Synergistic Toughening of Reduced Graphene Oxide and Double-Walled Carbon Nanotubes.
    Gong S; Cui W; Zhang Q; Cao A; Jiang L; Cheng Q
    ACS Nano; 2015 Dec; 9(12):11568-73. PubMed ID: 26469807
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro.
    Sayes CM; Liang F; Hudson JL; Mendez J; Guo W; Beach JM; Moore VC; Doyle CD; West JL; Billups WE; Ausman KD; Colvin VL
    Toxicol Lett; 2006 Feb; 161(2):135-42. PubMed ID: 16229976
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of functional groups on the radial collapse and elasticity of carbon nanotubes under hydrostatic pressure.
    Ling C; Xue Q; Jing N; Xia D
    Nanoscale; 2012 Jul; 4(13):3894-900. PubMed ID: 22628092
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Encapsulation of carbon chain molecules in single-walled carbon nanotubes.
    Kuwahara R; Kudo Y; Morisato T; Ohno K
    J Phys Chem A; 2011 May; 115(20):5147-56. PubMed ID: 21542616
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Interaction of a transition metal atom with intrinsic defects in single-walled carbon nanotubes.
    Yang SH; Shin WH; Lee JW; Kim SY; Woo SI; Kang JK
    J Phys Chem B; 2006 Jul; 110(28):13941-6. PubMed ID: 16836345
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mechanical properties of highly defective graphene: from brittle rupture to ductile fracture.
    Xu L; Wei N; Zheng Y
    Nanotechnology; 2013 Dec; 24(50):505703. PubMed ID: 24270887
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Crack Propagation and Fracture Toughness of Graphene Probed by Raman Spectroscopy.
    Zhang Z; Zhang X; Wang Y; Wang Y; Zhang Y; Xu C; Zou Z; Wu Z; Xia Y; Zhao P; Wang HT
    ACS Nano; 2019 Sep; 13(9):10327-10332. PubMed ID: 31424201
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cyclic fatigue-crack propagation, stress-corrosion, and fracture-toughness behavior in pyrolytic carbon-coated graphite for prosthetic heart valve applications.
    Ritchie RO; Dauskardt RH; Yu WK; Brendzel AM
    J Biomed Mater Res; 1990 Feb; 24(2):189-206. PubMed ID: 2329114
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.