These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 2698993)

  • 1. [Various aspects of structural studies of aspartate proteinases].
    Andreeva NS; Gushchina AE; Zhdanov AS; Pechik IV; Safro MG; Fedorov AA
    Mol Biol (Mosk); 1989; 23(6):1523-34. PubMed ID: 2698993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multidisciplinary cycles for protein engineering: site-directed mutagenesis and X-ray structural studies of aspartic proteinases.
    Pitts JE; Dhanaraj V; Dealwis CG; Mantafounis D; Nugent P; Orprayoon P; Cooper JB; Newman M; Blundell TL
    Scand J Clin Lab Invest Suppl; 1992; 210():39-50. PubMed ID: 1455178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray analyses of aspartic proteinases. V. Structure and refinement at 2.0 A resolution of the aspartic proteinase from Mucor pusillus.
    Newman M; Watson F; Roychowdhury P; Jones H; Badasso M; Cleasby A; Wood SP; Tickle IJ; Blundell TL
    J Mol Biol; 1993 Mar; 230(1):260-83. PubMed ID: 8450540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The structure of pepsin. I. Molecular self-symmetry of the enzyme and implications for the evolution of aspartate proteinases].
    Andreeva NS
    Mol Biol (Mosk); 1985; 19(1):218-24. PubMed ID: 3920505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gastric proteinases--structure, function, evolution and mechanism of action.
    Foltmann B
    Essays Biochem; 1981; 17():52-84. PubMed ID: 6795036
    [No Abstract]   [Full Text] [Related]  

  • 6. Three-dimensional structure of aspartyl protease from human immunodeficiency virus HIV-1.
    Navia MA; Fitzgerald PM; McKeever BM; Leu CT; Heimbach JC; Herber WK; Sigal IS; Darke PL; Springer JP
    Nature; 1989 Feb; 337(6208):615-20. PubMed ID: 2645523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution in the structure and function of aspartic proteases.
    Tang J; Wong RN
    J Cell Biochem; 1987 Jan; 33(1):53-63. PubMed ID: 3546346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 3D structural model of memapsin 2 protease generated from theoretical study.
    Huang XQ; Jiang HL; Luo XM; Shen JK; Chen KX; Ji RY; Cao Y; Xue H
    Acta Pharmacol Sin; 2001 Jan; 22(1):50-6. PubMed ID: 11730562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human immunodeficiency virus protease ligand specificity conferred by residues outside of the active site cavity.
    Hoog SS; Towler EM; Zhao B; Doyle ML; Debouck C; Abdel-Meguid SS
    Biochemistry; 1996 Aug; 35(32):10279-86. PubMed ID: 8756683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aspartic proteinases: their activation and structural studies.
    Turk V; Puizdar V; Lah T; Kregar I
    Prog Clin Biol Res; 1982; 102 Pt C():75-86. PubMed ID: 6762543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of human immunodeficiency virus protease cleavage sites in proteins.
    Chou KC
    Anal Biochem; 1996 Jan; 233(1):1-14. PubMed ID: 8789141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of aspartic proteinase from Irpex lacteus in complex with inhibitor pepstatin.
    Fujimoto Z; Fujii Y; Kaneko S; Kobayashi H; Mizuno H
    J Mol Biol; 2004 Aug; 341(5):1227-35. PubMed ID: 15321718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Use of results from comparing amino acid sequences and three-dimensional structures of aspartic proteinases in protein engineering of them].
    Pechik IV; Kashparov IV; Novikova LA; Andreeva NS
    Mol Biol (Mosk); 1999; 33(3):491-502. PubMed ID: 10519125
    [No Abstract]   [Full Text] [Related]  

  • 14. [X-ray study of chymosin. I. Molecular replacement at a 3 angstroms resolution].
    Safro MG; Andreeva NS; Zhdanov AS
    Mol Biol (Mosk); 1985; 19(2):400-5. PubMed ID: 3923328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A structural model for the retroviral proteases.
    Pearl LH; Taylor WR
    Nature; 1987 Sep 24-30; 329(6137):351-4. PubMed ID: 3306411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Mechanism of action of aspartyl proteinases. VI. Nonvalent enzyme-inhibitory and enzyme-substrate complexes of the aspartyl proteinase rhizopus pepsin].
    Kashparov IV; Popov ME; Rumsh LD; Popov EM
    Bioorg Khim; 1999 Oct; 25(10):747-62. PubMed ID: 10645478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Mechanism of action of aspartic proteinases. V. Conformational characteristics of fragments of substrate-binding sites in rhizopuspepsin and HIV-1 proteinase].
    Kashparov IV; Popov ME; Rumsh LD; Popov EM
    Bioorg Khim; 1999 Aug; 25(8):597-602. PubMed ID: 10578465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of equine infectious anemia virus proteinase complexed with an inhibitor.
    Gustchina A; Kervinen J; Powell DJ; Zdanov A; Kay J; Wlodawer A
    Protein Sci; 1996 Aug; 5(8):1453-65. PubMed ID: 8844837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural role of the 30's loop in determining the ligand specificity of the human immunodeficiency virus protease.
    Swairjo MA; Towler EM; Debouck C; Abdel-Meguid SS
    Biochemistry; 1998 Aug; 37(31):10928-36. PubMed ID: 9692985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction, expression and characterization of a chimaeric mammalian-plant aspartic proteinase.
    Payie KG; Tanaka T; Gal S; Yada RY
    Biochem J; 2003 Jun; 372(Pt 3):671-8. PubMed ID: 12630913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.