BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 26990133)

  • 41. Control of migrating motor activity in the colon.
    Spencer NJ
    Curr Opin Pharmacol; 2001 Dec; 1(6):604-10. PubMed ID: 11757816
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interstitial cells of Cajal: primary targets of enteric motor innervation.
    Ward SM; Sanders KM
    Anat Rec; 2001 Jan; 262(1):125-35. PubMed ID: 11146435
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mapping 5-HT inputs to enteric neurons of the guinea-pig small intestine.
    Neal KB; Bornstein JC
    Neuroscience; 2007 Mar; 145(2):556-67. PubMed ID: 17261354
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interstitial cells of Cajal and human colon motility in health and disease.
    Huizinga JD; Hussain A; Chen JH
    Am J Physiol Gastrointest Liver Physiol; 2021 Nov; 321(5):G552-G575. PubMed ID: 34612070
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The enteric nervous system and regulation of intestinal motility.
    Kunze WA; Furness JB
    Annu Rev Physiol; 1999; 61():117-42. PubMed ID: 10099684
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Propulsive colonic contractions are mediated by inhibition-driven poststimulus responses that originate in interstitial cells of Cajal.
    Koh SD; Drumm BT; Lu H; Kim HJ; Ryoo SB; Kim HU; Lee JY; Rhee PL; Wang Q; Gould TW; Heredia D; Perrino BA; Hwang SJ; Ward SM; Sanders KM
    Proc Natl Acad Sci U S A; 2022 May; 119(18):e2123020119. PubMed ID: 35446689
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The "rectosigmoid brake": Review of an emerging neuromodulation target for colorectal functional disorders.
    Lin AY; Dinning PG; Milne T; Bissett IP; O'Grady G
    Clin Exp Pharmacol Physiol; 2017 Jul; 44(7):719-728. PubMed ID: 28419527
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Release of 5-hydroxytryptamine from the mucosa is not required for the generation or propagation of colonic migrating motor complexes.
    Keating DJ; Spencer NJ
    Gastroenterology; 2010 Feb; 138(2):659-70 670.e1-2. PubMed ID: 19782081
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Gut pacemaker cells: the interstitial cells of Cajal (ICC).
    Takaki M
    J Smooth Muscle Res; 2003 Oct; 39(5):137-61. PubMed ID: 14695026
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chronic constipation: lessons from animal studies.
    Zarate N; Spencer NJ
    Best Pract Res Clin Gastroenterol; 2011 Feb; 25(1):59-71. PubMed ID: 21382579
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Acute paraquat exposure impairs colonic motility by selectively attenuating nitrergic signalling in the mouse.
    Diss L; Dyball S; Ghela T; Golding J; Morris R; Robinson S; Tucker R; Walter T; Young P; Allen M; Fidalgo S; Gard P; Mabley J; Patel B; Chatterjee P; Yeoman M
    Auton Neurosci; 2016 Feb; 195():8-15. PubMed ID: 26853977
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Periodic colonic motor activity identified by 24-h pancolonic ambulatory manometry in humans.
    Hagger R; Kumar D; Benson M; Grundy A
    Neurogastroenterol Motil; 2002 Jun; 14(3):271-8. PubMed ID: 12061912
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Colonic motility in humans--a growing understanding.
    Karaus M; Wienbeck M
    Baillieres Clin Gastroenterol; 1991 Jun; 5(2):453-78. PubMed ID: 1912659
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Is serotonin in enteric nerves required for distension-evoked peristalsis and propulsion of content in guinea-pig distal colon?
    Sia TC; Flack N; Robinson L; Kyloh M; Nicholas SJ; Brookes SJ; Wattchow DA; Dinning P; Oliver J; Spencer NJ
    Neuroscience; 2013 Jun; 240():325-35. PubMed ID: 23500097
    [TBL] [Abstract][Full Text] [Related]  

  • 55. New insights into neurogenic cyclic motor activity in the isolated guinea-pig colon.
    Costa M; Wiklendt L; Keightley L; Brookes SJH; Dinning PG; Spencer NJ
    Neurogastroenterol Motil; 2017 Oct; 29(10):1-13. PubMed ID: 28444866
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Diurnal changes in colonic motility in conscious dogs].
    Matsushima Y; Okamoto E; Toyosaka A; Suzuki E; Nose K; Nakamura A
    Nihon Heikatsukin Gakkai Zasshi; 1989 Apr; 25(2):47-54. PubMed ID: 2585909
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Colonic motor activity.
    Sarna SK
    Surg Clin North Am; 1993 Dec; 73(6):1201-23. PubMed ID: 8248835
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Restoration of normal colonic motor patterns and meal responses after distal colorectal resection.
    Vather R; O'Grady G; Arkwright JW; Rowbotham DS; Cheng LK; Dinning PG; Bissett IP
    Br J Surg; 2016 Mar; 103(4):451-61. PubMed ID: 26780492
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Colonic motility in innervated and extrinsically denervated loops in dogs.
    Shibata C; Sasaki I; Matsuno S; Mizumoto A; Itoh Z
    Gastroenterology; 1991 Dec; 101(6):1571-8. PubMed ID: 1955123
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Diversity of neurogenic smooth muscle electrical rhythmicity in mouse proximal colon.
    Spencer NJ; Travis L; Wiklendt L; Hibberd TJ; Costa M; Dinning P; Hu H
    Am J Physiol Gastrointest Liver Physiol; 2020 Feb; 318(2):G244-G253. PubMed ID: 31790272
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.