These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 26990180)
1. Solid-phase microextraction low temperature plasma mass spectrometry for the direct and rapid analysis of chemical warfare simulants in complex mixtures. Dumlao MC; Jeffress LE; Gooding JJ; Donald WA Analyst; 2016 Jun; 141(12):3714-21. PubMed ID: 26990180 [TBL] [Abstract][Full Text] [Related]
2. Detection of chemical warfare agent simulants and hydrolysis products in biological samples by paper spray mass spectrometry. McKenna J; Dhummakupt ES; Connell T; Demond PS; Miller DB; Michael Nilles J; Manicke NE; Glaros T Analyst; 2017 May; 142(9):1442-1451. PubMed ID: 28338135 [TBL] [Abstract][Full Text] [Related]
3. The ionization process of chemical warfare agent simulants in low temperature plasma ionization. Li B; Kong J; Zhang L; Fu W; Zhang Z; Li C Eur J Mass Spectrom (Chichester); 2020 Oct; 26(5):341-350. PubMed ID: 32819167 [TBL] [Abstract][Full Text] [Related]
4. Gold nanoparticles-enhanced ion-transmission mass spectrometry for highly sensitive detection of chemical warfare agent simulants. Zhang L; Zhao X; Cheng H; Kong J; Zhao Y; Zhu X; Zhang S; Zhang X Talanta; 2018 Dec; 190():403-409. PubMed ID: 30172526 [TBL] [Abstract][Full Text] [Related]
5. Analysis of chemical warfare agents in food products by atmospheric pressure ionization-high field asymmetric waveform ion mobility spectrometry-mass spectrometry. Kolakowski BM; D'Agostino PA; Chenier C; Mester Z Anal Chem; 2007 Nov; 79(21):8257-65. PubMed ID: 17896827 [TBL] [Abstract][Full Text] [Related]
6. Application of a high surface area solid-phase microextraction air sampling device: collection and analysis of chemical warfare agent surrogate and degradation compounds. Stevens ME; Tipple CA; Smith PA; Cho DS; Mustacich RV; Eckenrode BA Anal Chem; 2013 Sep; 85(18):8626-33. PubMed ID: 23902152 [TBL] [Abstract][Full Text] [Related]
7. Determination of chemical warfare agents and related compounds in environmental samples by solid-phase microextraction with gas chromatography. Popiel S; Sankowska M J Chromatogr A; 2011 Nov; 1218(47):8457-79. PubMed ID: 22015307 [TBL] [Abstract][Full Text] [Related]
8. Secondary ionization of chemical warfare agent simulants: atmospheric pressure ion mobility time-of-flight mass spectrometry. Steiner WE; Clowers BH; Haigh PE; Hill HH Anal Chem; 2003 Nov; 75(22):6068-76. PubMed ID: 14615983 [TBL] [Abstract][Full Text] [Related]
9. Mass spectrometric analysis of chemical warfare agents and their degradation products in soil and synthetic samples. D'Agostino PA; Hancock JR; Chenier CL Eur J Mass Spectrom (Chichester); 2003; 9(6):609-18. PubMed ID: 15100471 [TBL] [Abstract][Full Text] [Related]
10. Non-equilibrium solid-phase microextraction coupled directly to ion-trap mass spectrometry for rapid analysis of biological samples. van Hout MW; Jas V; Niederländer HA; de Zeeuw RA; de Jong GJ Analyst; 2002 Mar; 127(3):355-9. PubMed ID: 11996359 [TBL] [Abstract][Full Text] [Related]
11. Ionization mechanism of the ambient pressure pyroelectric ion source (APPIS) and its applications to chemical nerve agent detection. Neidholdt EL; Beauchamp JL J Am Soc Mass Spectrom; 2009 Nov; 20(11):2093-9. PubMed ID: 19682922 [TBL] [Abstract][Full Text] [Related]
12. Desorption electrospray ionization mass spectrometric analysis of organophosphorus chemical warfare agents using ion mobility and tandem mass spectrometry. D'Agostino PA; Chenier CL Rapid Commun Mass Spectrom; 2010 Jun; 24(11):1617-24. PubMed ID: 20486257 [TBL] [Abstract][Full Text] [Related]
13. Analysis of gaseous toxic industrial compounds and chemical warfare agent simulants by atmospheric pressure ionization mass spectrometry. Cotte-Rodríguez I; Justes DR; Nanita SC; Noll RJ; Mulligan CC; Sanders NL; Cooks RG Analyst; 2006 Apr; 131(4):579-89. PubMed ID: 16568176 [TBL] [Abstract][Full Text] [Related]
14. Non-proximate detection of small and large molecules by desorption electrospray ionization and desorption atmospheric pressure chemical ionization mass spectrometry: instrumentation and applications in forensics, chemistry, and biology. Cotte-Rodríguez I; Mulligan CC; Cooks RG Anal Chem; 2007 Sep; 79(18):7069-77. PubMed ID: 17696318 [TBL] [Abstract][Full Text] [Related]
15. Chemical agent identification by field-based attenuated total reflectance infrared detection and solid-phase microextraction. Bryant CK; LaPuma PT; Hook GL; Houser EJ Anal Chem; 2007 Mar; 79(6):2334-40. PubMed ID: 17284014 [TBL] [Abstract][Full Text] [Related]
16. Headspace versus direct immersion solid phase microextraction in complex matrixes: investigation of analyte behavior in multicomponent mixtures. Gionfriddo E; Souza-Silva ÉA; Pawliszyn J Anal Chem; 2015 Aug; 87(16):8448-56. PubMed ID: 26196654 [TBL] [Abstract][Full Text] [Related]
17. Facility monitoring of chemical warfare agent simulants in air using an automated, field-deployable, miniature mass spectrometer. Smith JN; Noll RJ; Cooks RG Rapid Commun Mass Spectrom; 2011 May; 25(10):1437-44. PubMed ID: 21504010 [TBL] [Abstract][Full Text] [Related]
18. Collection method for chemical particulates on surfaces with detection using thermal desorption-ion trap mass spectrometry. Ewing KJ; Gibson D; Sanghera J; Miklos F Anal Chim Acta; 2013 May; 776():64-8. PubMed ID: 23601282 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of porous ionic liquid polymer as solid-phase microextraction coating for analysis of organic acids by gas chromatography - mass spectrometry. Tang Z; Duan Y Talanta; 2017 Sep; 172():45-52. PubMed ID: 28602302 [TBL] [Abstract][Full Text] [Related]
20. Kinetics of ion-molecule reactions with dimethyl methylphosphonate at 298 K for chemical ionization mass spectrometry detection of GX. Midey AJ; Miller TM; Viggiano AA J Phys Chem A; 2009 Apr; 113(17):4982-9. PubMed ID: 19385679 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]