BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 26990235)

  • 1. Visible Raman excitation laser induced power and exposure dependent effects in red blood cells.
    Ahlawat S; Kumar N; Uppal A; Kumar Gupta P
    J Biophotonics; 2017 Mar; 10(3):415-422. PubMed ID: 26990235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel single-cell functional analysis of red blood cells using laser tweezers Raman spectroscopy: application for sickle cell disease.
    Liu R; Mao Z; Matthews DL; Li CS; Chan JW; Satake N
    Exp Hematol; 2013 Jul; 41(7):656-661.e1. PubMed ID: 23537725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation.
    Wood BR; Caspers P; Puppels GJ; Pandiancherri S; McNaughton D
    Anal Bioanal Chem; 2007 Mar; 387(5):1691-703. PubMed ID: 17151857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hemoglobin degradation in human erythrocytes with long-duration near-infrared laser exposure in Raman optical tweezers.
    Dasgupta R; Ahlawat S; Verma RS; Uppal A; Gupta PK
    J Biomed Opt; 2010; 15(5):055009. PubMed ID: 21054091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental analysis of Hb oxy-deoxy transition in single optically stretched red blood cells.
    Rusciano G
    Phys Med; 2010 Oct; 26(4):233-9. PubMed ID: 20185349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical guiding-based cell focusing for Raman flow cell cytometer.
    Verma RS; Ahlawat S; Uppal A
    Analyst; 2018 May; 143(11):2648-2655. PubMed ID: 29756139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in hemoglobin-oxygen affinity with shape variations of red blood cells.
    Chowdhury A; Dasgupta R; Majumder SK
    J Biomed Opt; 2017 Oct; 22(10):1-9. PubMed ID: 29055124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on erythrocytes in malaria infected blood sample with Raman optical tweezers.
    Dasgupta R; Verma RS; Ahlawat S; Uppal A; Gupta PK
    J Biomed Opt; 2011 Jul; 16(7):077009. PubMed ID: 21806289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resonance Raman spectroscopy of optically trapped functional erythrocytes.
    Ramser K; Logg K; Goksör M; Enger J; Käll M; Hanstorp D
    J Biomed Opt; 2004; 9(3):593-600. PubMed ID: 15189098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Damage induced in red blood cells by infrared optical trapping: an evaluation based on elasticity measurements.
    de Oliveira MA; Moura DS; Fontes A; de Araujo RE
    J Biomed Opt; 2016 Jul; 21(7):75012. PubMed ID: 27435896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of short term hyperglycemia on human red blood cells studied using Raman spectroscopy and optical trap.
    Singh Y; Chowdhury A; Dasgupta R; Majumder SK
    Eur Biophys J; 2021 Sep; 50(6):867-876. PubMed ID: 34110463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Importance of substrate and photo-induced effects in Raman spectroscopy of single functional erythrocytes.
    Ramser K; Bjerneld EJ; Fant C; Käll M
    J Biomed Opt; 2003 Apr; 8(2):173-8. PubMed ID: 12683842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polarized Raman spectroscopic investigations on hemoglobin ordering in red blood cells.
    Ahlawat S; Chowdhury A; Kumar N; Uppal A; Verma RS; Gupta PK
    J Biomed Opt; 2014 Aug; 19(8):087002. PubMed ID: 25121481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of lithium on human red blood cells studied using optical spectroscopy and laser trap.
    Singh Y; Chowdhury A; Dasgupta R; Majumder SK
    Eur Biophys J; 2023 Feb; 52(1-2):91-100. PubMed ID: 36929427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carboxylated nanodiamonds inhibit γ-irradiation damage of human red blood cells.
    Santacruz-Gomez K; Silva-Campa E; Melendrez-Amavizca R; Teran Arce F; Mata-Haro V; Landon PB; Zhang C; Pedroza-Montero M; Lal R
    Nanoscale; 2016 Apr; 8(13):7189-96. PubMed ID: 26972691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single cell spectroscopy of red blood cells in intravenous crystalloid fluids.
    N M; Lukose J; Mohan G; Shastry S; Chidangil S
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Aug; 257():119726. PubMed ID: 33848954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman microspectroscopy and imaging provides insights into heme aggregation and denaturation within human erythrocytes.
    Wood BR; Hammer L; Davis L; McNaughton D
    J Biomed Opt; 2005; 10(1):14005. PubMed ID: 15847586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous photoreduction and Raman spectroscopy of red blood cells to investigate the effects of organophosphate exposure.
    Singh Y; Chowdhury A; Mukherjee C; Dasgupta R; Majumder SK
    J Biophotonics; 2019 May; 12(5):e201800246. PubMed ID: 30666814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers.
    Rao S; Bálint S; Cossins B; Guallar V; Petrov D
    Biophys J; 2009 Jan; 96(1):209-16. PubMed ID: 18931252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical Trapping and Micro-Raman Spectroscopy of Functional Red Blood Cells Using Vortex Beam for Cell Membrane Studies.
    C G; Shetty S; Bharati S; Chidangil S; Bankapur A
    Anal Chem; 2021 Apr; 93(13):5484-5493. PubMed ID: 33764040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.