These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 26990289)

  • 1. Time-Resolved Broadband Cavity-Enhanced Absorption Spectroscopy behind Shock Waves.
    Matsugi A; Shiina H; Oguchi T; Takahashi K
    J Phys Chem A; 2016 Apr; 120(13):2070-7. PubMed ID: 26990289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal Decomposition of Benzyl Radicals: Kinetics and Spectroscopy in a Shock Tube.
    Matsugi A
    J Phys Chem A; 2020 Feb; 124(5):824-835. PubMed ID: 31917568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shock tube and theoretical studies on the thermal decomposition of propane: evidence for a roaming radical channel.
    Sivaramakrishnan R; Su MC; Michael JV; Klippenstein SJ; Harding LB; Ruscic B
    J Phys Chem A; 2011 Apr; 115(15):3366-79. PubMed ID: 21446707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High temperature shock tube and theoretical studies on the thermal decomposition of dimethyl carbonate and its bimolecular reactions with H and D-atoms.
    Peukert SL; Sivaramakrishnan R; Michael JV
    J Phys Chem A; 2013 May; 117(18):3718-28. PubMed ID: 23510116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A broadband absorption spectrometer using light emitting diodes for ultrasensitive, in situ trace gas detection.
    Langridge JM; Ball SM; Shillings AJ; Jones RL
    Rev Sci Instrum; 2008 Dec; 79(12):123110. PubMed ID: 19123548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shock tube study on the thermal decomposition of fluoroethane using infrared laser absorption detection of hydrogen fluoride.
    Matsugi A; Shiina H
    J Phys Chem A; 2014 Aug; 118(34):6832-7. PubMed ID: 25090102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cavity-enhanced absorption spectroscopy with a ps-pulsed UV laser for sensitive, high-speed measurements in a shock tube.
    Wang S; Sun K; Davidson DF; Jeffries JB; Hanson RK
    Opt Express; 2016 Jan; 24(1):308-18. PubMed ID: 26832262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultraviolet photolysis of HCHO: absolute HCO quantum yields by direct detection of the HCO radical photoproduct.
    Carbajo PG; Smith SC; Holloway AL; Smith CA; Pope FD; Shallcross DE; Orr-Ewing AJ
    J Phys Chem A; 2008 Dec; 112(48):12437-48. PubMed ID: 18998660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Broadband cavity enhanced absorption spectroscopy as a detector for HPLC.
    Seetohul LN; Ali Z; Islam M
    Anal Chem; 2009 May; 81(10):4106-12. PubMed ID: 19438269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shock-tube measurements of excited oxygen atoms using cavity-enhanced absorption spectroscopy.
    Nations M; Wang S; Goldenstein CS; Sun K; Davidson DF; Jeffries JB; Hanson RK
    Appl Opt; 2015 Oct; 54(29):8766-75. PubMed ID: 26479817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-resolved in situ detection of CO in a shock tube using cavity-enhanced absorption spectroscopy with a quantum-cascade laser near 4.6 µm.
    Sun K; Wang S; Sur R; Chao X; Jeffries JB; Hanson RK
    Opt Express; 2014 Oct; 22(20):24559-65. PubMed ID: 25322031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liquid-phase broadband cavity-enhanced absorption spectroscopy measurements in a 2 mm cuvette.
    Islam M; Seetohul LN; Ali Z
    Appl Spectrosc; 2007 Jun; 61(6):649-58. PubMed ID: 17650378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shock Tube/Laser Absorption Measurements of the High-Temperature Spectra and Decomposition of Propyl Ethers.
    Adil M; Farooq A
    J Phys Chem A; 2023 Sep; 127(37):7764-7771. PubMed ID: 37691256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wide temperature range (T = 295 K and 770-1305 K) study of the kinetics of the reactions HCO + NO and HCO + NO2 using frequency modulation spectroscopy.
    Dammeier J; Colberg M; Friedrichs G
    Phys Chem Chem Phys; 2007 Aug; 9(31):4177-88. PubMed ID: 17687467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-temperature shock tube measurements of methyl radical decomposition.
    Vasudevan V; Hanson RK; Golden DM; Bowman CT; Davidson DF
    J Phys Chem A; 2007 May; 111(19):4062-72. PubMed ID: 17388279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liquid-phase broadband cavity enhanced absorption spectroscopy (BBCEAS) studies in a 20 cm cell.
    Seetohul LN; Ali Z; Islam M
    Analyst; 2009 Sep; 134(9):1887-95. PubMed ID: 19684915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Absorption cross sections of formaldehyde at wavelengths from 300 to 340 nm at 294 and 245 K.
    Smith CA; Pope FD; Cronin B; Parkes CB; Orr-Ewing AJ
    J Phys Chem A; 2006 Oct; 110(41):11645-53. PubMed ID: 17034158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reaction rate constant of CH2O + H = HCO + H2 revisited: a combined study of direct shock tube measurement and transition state theory calculation.
    Wang S; Dames EE; Davidson DF; Hanson RK
    J Phys Chem A; 2014 Nov; 118(44):10201-9. PubMed ID: 25319141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cavity enhanced liquid-phase stopped-flow kinetics.
    Bajuszova Z; Naif H; Ali Z; McGinnis J; Islam M
    Analyst; 2018 Jan; 143(2):493-502. PubMed ID: 29271423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature dependent structured absorption spectra of molecular chlorine.
    Young IA; Murray C; Blaum CM; Cox RA; Jones RL; Pope FD
    Phys Chem Chem Phys; 2011 Sep; 13(33):15318-25. PubMed ID: 21792401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.