BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 26990649)

  • 1. Anacardic Acid, Salicylic Acid, and Oleic Acid Differentially Alter Cellular Bioenergetic Function in Breast Cancer Cells.
    Radde BN; Alizadeh-Rad N; Price SM; Schultz DJ; Klinge CM
    J Cell Biochem; 2016 Nov; 117(11):2521-32. PubMed ID: 26990649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anacardic acid inhibits estrogen receptor alpha-DNA binding and reduces target gene transcription and breast cancer cell proliferation.
    Schultz DJ; Wickramasinghe NS; Ivanova MM; Isaacs SM; Dougherty SM; Imbert-Fernandez Y; Cunningham AR; Chen C; Klinge CM
    Mol Cancer Ther; 2010 Mar; 9(3):594-605. PubMed ID: 20197399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy Metabolism Drugs Block Triple Negative Breast Metastatic Cancer Cell Phenotype.
    Pacheco-Velázquez SC; Robledo-Cadena DX; Hernández-Reséndiz I; Gallardo-Pérez JC; Moreno-Sánchez R; Rodríguez-Enríquez S
    Mol Pharm; 2018 Jun; 15(6):2151-2164. PubMed ID: 29746779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear respiratory factor-1 and bioenergetics in tamoxifen-resistant breast cancer cells.
    Radde BN; Ivanova MM; Mai HX; Alizadeh-Rad N; Piell K; Van Hoose P; Cole MP; Muluhngwi P; Kalbfleisch TS; Rouchka EC; Hill BG; Klinge CM
    Exp Cell Res; 2016 Sep; 347(1):222-231. PubMed ID: 27515002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial dysfunction in some triple-negative breast cancer cell lines: role of mTOR pathway and therapeutic potential.
    Pelicano H; Zhang W; Liu J; Hammoudi N; Dai J; Xu RH; Pusztai L; Huang P
    Breast Cancer Res; 2014 Sep; 16(5):434. PubMed ID: 25209360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioenergetic differences between MCF-7 and T47D breast cancer cells and their regulation by oestradiol and tamoxifen.
    Radde BN; Ivanova MM; Mai HX; Salabei JK; Hill BG; Klinge CM
    Biochem J; 2015 Jan; 465(1):49-61. PubMed ID: 25279503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FR58P1a; a new uncoupler of OXPHOS that inhibits migration in triple-negative breast cancer cells via Sirt1/AMPK/β1-integrin pathway.
    Urra FA; Muñoz F; Córdova-Delgado M; Ramírez MP; Peña-Ahumada B; Rios M; Cruz P; Ahumada-Castro U; Bustos G; Silva-Pavez E; Pulgar R; Morales D; Varela D; Millas-Vargas JP; Retamal E; Ramírez-Rodríguez O; Pessoa-Mahana H; Pavani M; Ferreira J; Cárdenas C; Araya-Maturana R
    Sci Rep; 2018 Sep; 8(1):13190. PubMed ID: 30181620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Minerval (2-hydroxyoleic acid) causes cancer cell selective toxicity by uncoupling oxidative phosphorylation and compromising bioenergetic compensation capacity.
    Massalha W; Markovits M; Pichinuk E; Feinstein-Rotkopf Y; Tarshish M; Mishra K; Llado V; Weil M; Escriba PV; Kakhlon O
    Biosci Rep; 2019 Jan; 39(1):. PubMed ID: 30602451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mitochondria-targeted imidazole substituted oleic acid 'TPP-IOA' affects mitochondrial bioenergetics and its protective efficacy in cells is influenced by cellular dependence on aerobic metabolism.
    Maddalena LA; Ghelfi M; Atkinson J; Stuart JA
    Biochim Biophys Acta Bioenerg; 2017 Jan; 1858(1):73-85. PubMed ID: 27836699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uncoupling effect of anacardic acids from cashew nut shell oil on oxidative phosphorylation of rat liver mitochondria.
    Toyomizu M; Okamoto K; Ishibashi T; Chen Z; Nakatsu T
    Life Sci; 2000; 66(3):229-34. PubMed ID: 10665998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptomic response of breast cancer cells to anacardic acid.
    Schultz DJ; Krishna A; Vittitow SL; Alizadeh-Rad N; Muluhngwi P; Rouchka EC; Klinge CM
    Sci Rep; 2018 May; 8(1):8063. PubMed ID: 29795261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic Analysis Reveals That an Extract of the Plant Lippia origanoides Suppresses Mitochondrial Metabolism in Triple-Negative Breast Cancer Cells.
    Raman V; Aryal UK; Hedrick V; Ferreira RM; Fuentes Lorenzo JL; Stashenko EE; Levy M; Levy MM; Camarillo IG
    J Proteome Res; 2018 Oct; 17(10):3370-3383. PubMed ID: 30185032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of Mitochondrial ERβ Expression Inhibits Triple-Negative Breast Cancer Tumor Progression by Activating Mitochondrial Function.
    Song IS; Jeong YJ; Jeong SH; Kim JE; Han J; Kim TH; Jang SW
    Cell Physiol Biochem; 2019; 52(3):468-485. PubMed ID: 30873822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. β-D-glucan inhibits endocrine-resistant breast cancer cell proliferation and alters gene expression.
    Jafaar ZM; Litchfield LM; Ivanova MM; Radde BN; Al-Rayyan N; Klinge CM
    Int J Oncol; 2014 Apr; 44(4):1365-75. PubMed ID: 24534923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of anacardic acid, a Hsp90 inhibitor, on proliferation, invasion and migration of breast cancer MDA-MB-231 cells].
    Li H; Nie L; Huo Q; Zhao S; Ma T; Wu C; Liu H
    Nan Fang Yi Ke Da Xue Xue Bao; 2015 Mar; 35(3):355-9. PubMed ID: 25818779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oleic acid stimulates glucagon-like peptide-1 release from enteroendocrine cells by modulating cell respiration and glycolysis.
    Clara R; Langhans W; Mansouri A
    Metabolism; 2016 Mar; 65(3):8-17. PubMed ID: 26892511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic bioenergetic alterations in colorectal adenomatous polyps and adenocarcinomas.
    Lin WR; Chiang JM; Lim SN; Su MY; Chen TH; Huang SW; Chen CW; Wu RC; Tsai CL; Lin YH; Alison MR; Hsieh SY; Yu JS; Chiu CT; Yeh CT
    EBioMedicine; 2019 Jun; 44():334-345. PubMed ID: 31122841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cardamonin inhibits breast cancer growth by repressing HIF-1α-dependent metabolic reprogramming.
    Jin J; Qiu S; Wang P; Liang X; Huang F; Wu H; Zhang B; Zhang W; Tian X; Xu R; Shi H; Wu X
    J Exp Clin Cancer Res; 2019 Aug; 38(1):377. PubMed ID: 31455352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell bioenergetics in Leghorn male hepatoma cells and immortalized chicken liver cells in response to 4-hydroxy 2-nonenal-induced oxidative stress.
    Piekarski AL; Kong BW; Lassiter K; Hargis BM; Bottje WG
    Poult Sci; 2014 Nov; 93(11):2870-7. PubMed ID: 25143593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Knockout of human arylamine N-acetyltransferase 1 (NAT1) in MDA-MB-231 breast cancer cells leads to increased reserve capacity, maximum mitochondrial capacity, and glycolytic reserve capacity.
    Carlisle SM; Trainor PJ; Doll MA; Stepp MW; Klinge CM; Hein DW
    Mol Carcinog; 2018 Nov; 57(11):1458-1466. PubMed ID: 29964355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.