These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 26990706)

  • 1. Intra-individual gait pattern variability in specific situations: Implications for forensic gait analysis.
    Ludwig O; Dillinger S; Marschall F
    Forensic Sci Int; 2016 Jul; 264():15-23. PubMed ID: 26990706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of velocity on variability in gait kinematics: implications for recognition in forensic science.
    Yang SX; Larsen PK; Alkjaer T; Lynnerup N; Simonsen EB
    J Forensic Sci; 2014 Sep; 59(5):1242-7. PubMed ID: 24684582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On using gait in forensic biometrics.
    Bouchrika I; Goffredo M; Carter J; Nixon M
    J Forensic Sci; 2011 Jul; 56(4):882-9. PubMed ID: 21554307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variability and similarity of gait as evaluated by joint angles: implications for forensic gait analysis.
    Yang SX; Larsen PK; Alkjær T; Simonsen EB; Lynnerup N
    J Forensic Sci; 2014 Mar; 59(2):494-504. PubMed ID: 24745080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Footwear Alters Lower Extremity Coordination Variability.
    Romer BH; Weimar W; Fox J
    Percept Mot Skills; 2019 Oct; 126(5):764-778. PubMed ID: 31333061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting body movements for person identification under different walking conditions.
    Nguyen DP; Phan CB; Koo S
    Forensic Sci Int; 2018 Sep; 290():303-309. PubMed ID: 30103180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Objective assessment of motor fatigue in Multiple Sclerosis using kinematic gait analysis: a pilot study.
    Sehle A; Mündermann A; Starrost K; Sailer S; Becher I; Dettmers C; Vieten M
    J Neuroeng Rehabil; 2011 Oct; 8():59. PubMed ID: 22029427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in gait and EMG when walking with the Masai Barefoot Technique.
    Romkes J; Rudmann C; Brunner R
    Clin Biomech (Bristol); 2006 Jan; 21(1):75-81. PubMed ID: 16169641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of age on lower extremity joint kinematics and kinetics during level walking with Masai barefoot technology shoes.
    Buchecker M; Lindinger S; Pfusterschmied J; Müller E
    Eur J Phys Rehabil Med; 2013 Oct; 49(5):675-86. PubMed ID: 23792632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forensic gait analysis - Morphometric assessment from surveillance footage.
    Seckiner D; Mallett X; Maynard P; Meuwly D; Roux C
    Forensic Sci Int; 2019 Mar; 296():57-66. PubMed ID: 30690252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of wedges on lower limbs' kinematics and net joint moments during healthy elderly gait using principal component analysis.
    Soares DP; de Castro MP; Mendes E; Machado L
    Hum Mov Sci; 2014 Dec; 38():319-30. PubMed ID: 25457428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of lower limb electromyographic activity when using unstable shoes for the first time: a pilot quasi control trial.
    Branthwaite H; Chockalingam N; Pandyan A; Khatri G
    Prosthet Orthot Int; 2013 Aug; 37(4):275-81. PubMed ID: 23201624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of high-heeled and sport shoes on multi-joint external load profile during walking.
    Pino-Ortega J; Oliva-Lozano JM; Gómez-Carmona CD; Rojas-Valverde D; Bastida-Castillo A; Moreno-Pérez V; Nakamura FY
    J Back Musculoskelet Rehabil; 2021; 34(3):389-398. PubMed ID: 33459694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classifying lower extremity muscle fatigue during walking using machine learning and inertial sensors.
    Zhang J; Lockhart TE; Soangra R
    Ann Biomed Eng; 2014 Mar; 42(3):600-12. PubMed ID: 24081829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applications of markerless motion capture in gait recognition.
    Sandau M
    Dan Med J; 2016 Mar; 63(3):. PubMed ID: 26931198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuro-mechanical adjustments to shod versus barefoot treadmill runs in the acute and delayed stretch-shortening cycle recovery phases.
    Morio C; Sevrez V; Chavet P; Berton E; Nicol C
    J Sports Sci; 2016; 34(8):738-45. PubMed ID: 26222328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gait characteristics when walking with rounded soft sole shoes.
    Demura T; Demura S; Yamaji S; Yamada T; Kitabayashi T
    Foot (Edinb); 2012 Mar; 22(1):18-23. PubMed ID: 22079403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increasing the number of gait trial recordings maximises intra-rater reliability of the CODA motion analysis system.
    Monaghan K; Delahunt E; Caulfield B
    Gait Posture; 2007 Feb; 25(2):303-15. PubMed ID: 16730177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lower extremity kinematics during walking and elliptical training in individuals with and without traumatic brain injury.
    Buster T; Burnfield J; Taylor AP; Stergiou N
    J Neurol Phys Ther; 2013 Dec; 37(4):176-86. PubMed ID: 24189335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.