BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

527 related articles for article (PubMed ID: 26990815)

  • 21. Rat bone marrow stromal cells-seeded porous gelatin/tricalcium phosphate/oligomeric proanthocyanidins composite scaffold for bone repair.
    Chen KY; Chung CM; Chen YS; Bau DT; Yao CH
    J Tissue Eng Regen Med; 2013 Sep; 7(9):708-19. PubMed ID: 22392838
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Osteogenic stimulation of human dental pulp stem cells with a novel gelatin-hydroxyapatite-tricalcium phosphate scaffold.
    Gu Y; Bai Y; Zhang D
    J Biomed Mater Res A; 2018 Jul; 106(7):1851-1861. PubMed ID: 29520937
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The immunogenic reaction and bone defect repair function of ε-poly-L-lysine (EPL)-coated nanoscale PCL/HA scaffold in rabbit calvarial bone defect.
    Tian B; Wang N; Jiang Q; Tian L; Hu L; Zhang Z
    J Mater Sci Mater Med; 2021 Jun; 32(6):63. PubMed ID: 34097140
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reconstruction of rat calvarial defects with human mesenchymal stem cells and osteoblast-like cells in poly-lactic-co-glycolic acid scaffolds.
    Zong C; Xue D; Yuan W; Wang W; Shen D; Tong X; Shi D; Liu L; Zheng Q; Gao C; Wang J
    Eur Cell Mater; 2010 Sep; 20():109-20. PubMed ID: 21249628
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CD34
    Hertweck J; Ritz U; Götz H; Schottel PC; Rommens PM; Hofmann A
    J Biomed Mater Res B Appl Biomater; 2018 May; 106(4):1505-1516. PubMed ID: 28730696
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength.
    Maji K; Dasgupta S; Kundu B; Bissoyi A
    J Biomater Sci Polym Ed; 2015; 26(16):1190-209. PubMed ID: 26335156
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multilayer cellular stacks of gelatin-hydroxyapatite fiber scaffolds for bone tissue engineering.
    Salifu AA; Lekakou C; Labeed F
    J Biomed Mater Res A; 2017 Mar; 105(3):779-789. PubMed ID: 27784129
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Titanium-enriched hydroxyapatite-gelatin scaffolds with osteogenically differentiated progenitor cell aggregates for calvaria bone regeneration.
    Ferreira JR; Padilla R; Urkasemsin G; Yoon K; Goeckner K; Hu WS; Ko CC
    Tissue Eng Part A; 2013 Aug; 19(15-16):1803-16. PubMed ID: 23495972
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Effects of Adipose-Derived Stem Cells Differentiated Into Endothelial Cells and Osteoblasts on Healing of Critical Size Calvarial Defects.
    Orbay H; Busse B; Leach JK; Sahar DE
    J Craniofac Surg; 2017 Oct; 28(7):1874-1879. PubMed ID: 28872512
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Porous Chitosan/Nano-Hydroxyapatite Composite Scaffolds Incorporating Simvastatin-Loaded PLGA Microspheres for Bone Repair.
    Li Y; Zhang Z; Zhang Z
    Cells Tissues Organs; 2018; 205(1):20-31. PubMed ID: 29393155
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bone formation on the apatite-coated zirconia porous scaffolds within a rabbit calvarial defect.
    Kim HW; Shin SY; Kim HE; Lee YM; Chung CP; Lee HH; Rhyu IC
    J Biomater Appl; 2008 May; 22(6):485-504. PubMed ID: 17494967
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel layered double hydroxides-hydroxyapatite/gelatin bone tissue engineering scaffolds: Fabrication, characterization, and in vivo study.
    Fayyazbakhsh F; Solati-Hashjin M; Keshtkar A; Shokrgozar MA; Dehghan MM; Larijani B
    Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():701-714. PubMed ID: 28482581
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Tissue engineering study on chitosan-gelatin/hydroxyapatite composite scaffolds--osteoblasts culture].
    Zhao F; Yin YJ; Yao KD; Guo G; Wang BL; Zhang JY; Zhang MF
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2002 Mar; 16(2):130-3. PubMed ID: 11944521
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Osteogenic potential of stem cells-seeded bioactive nanocomposite scaffolds: A comparative study between human mesenchymal stem cells derived from bone, umbilical cord Wharton's jelly, and adipose tissue.
    Kargozar S; Mozafari M; Hashemian SJ; Brouki Milan P; Hamzehlou S; Soleimani M; Joghataei MT; Gholipourmalekabadi M; Korourian A; Mousavizadeh K; Seifalian AM
    J Biomed Mater Res B Appl Biomater; 2018 Jan; 106(1):61-72. PubMed ID: 27862947
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A specific groove design for individualized healing in a canine partial sternal defect model by a polycaprolactone/hydroxyapatite scaffold coated with bone marrow stromal cells.
    Xuan Y; Tang H; Wu B; Ding X; Lu Z; Li W; Xu Z
    J Biomed Mater Res A; 2014 Oct; 102(10):3401-8. PubMed ID: 24142768
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of bone regeneration in implants composed of hollow HA microspheres loaded with transforming growth factor β1 in a rat calvarial defect model.
    Fu H; Rahaman MN; Brown RF; Day DE
    Acta Biomater; 2013 Mar; 9(3):5718-27. PubMed ID: 23168225
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bone regeneration in rat calvarial defects implanted with fibrous scaffolds composed of a mixture of silicate and borate bioactive glasses.
    Gu Y; Huang W; Rahaman MN; Day DE
    Acta Biomater; 2013 Nov; 9(11):9126-36. PubMed ID: 23827095
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The use of ASCs engineered to express BMP2 or TGF-β3 within scaffold constructs to promote calvarial bone repair.
    Lin CY; Chang YH; Li KC; Lu CH; Sung LY; Yeh CL; Lin KJ; Huang SF; Yen TC; Hu YC
    Biomaterials; 2013 Dec; 34(37):9401-12. PubMed ID: 24016854
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of three-dimensional porous chitosan-alginate scaffolds in rat calvarial defects for bone regeneration applications.
    Florczyk SJ; Leung M; Li Z; Huang JI; Hopper RA; Zhang M
    J Biomed Mater Res A; 2013 Oct; 101(10):2974-83. PubMed ID: 23737120
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3,4-dihydroxyphenylalanine-assisted hydroxyapatite nanoparticle coating on polymer scaffolds for efficient osteoconduction.
    Yang HS; Park J; La WG; Jang HK; Lee M; Kim BS
    Tissue Eng Part C Methods; 2012 Apr; 18(4):245-51. PubMed ID: 22047103
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.