These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 26991079)

  • 1. Combining existing numerical models with data assimilation using weighted least-squares finite element methods.
    Rajaraman PK; Manteuffel TA; Belohlavek M; Heys JJ
    Int J Numer Method Biomed Eng; 2017 Jan; 33(1):. PubMed ID: 26991079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Weighted least-squares finite element method for cardiac blood flow simulation with echocardiographic data.
    Wei F; Westerdale J; McMahon EM; Belohlavek M; Heys JJ
    Comput Math Methods Med; 2012; 2012():371315. PubMed ID: 22312412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling 3-D compliant blood flow with FOSLS.
    Heys JJ; DeGroff C; Manteuffel T; McCormick S; Tufo H
    Biomed Sci Instrum; 2004; 40():193-9. PubMed ID: 15133957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transversally enriched pipe element method (TEPEM): An effective numerical approach for blood flow modeling.
    Mansilla Alvarez L; Blanco P; Bulant C; Dari E; Veneziani A; Feijóo R
    Int J Numer Method Biomed Eng; 2017 Apr; 33(4):. PubMed ID: 27302372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First-order system least-squares (FOSLS) for modeling blood flow.
    Heys JJ; DeGroff CG; Manteuffel TA; McCormick SF
    Med Eng Phys; 2006 Jul; 28(6):495-503. PubMed ID: 16275152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite Element Iterative Methods for the 3D Steady Navier--Stokes Equations.
    He Y
    Entropy (Basel); 2021 Dec; 23(12):. PubMed ID: 34945965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical simulation of self-sustained oscillation of a voice-producing element based on Navier-Stokes equations and the finite element method.
    de Vries MP; Hamburg MC; Schutte HK; Verkerke GJ; Veldman AE
    J Acoust Soc Am; 2003 Apr; 113(4 Pt 1):2077-83. PubMed ID: 12703718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First-order system least squares for elastohydrodynamics with application to flow in compliant blood vessels.
    Heys JJ; DeGroff CG; Orlando WW; Manteuffel TA; McCormick SF
    Biomed Sci Instrum; 2002; 38():277-82. PubMed ID: 12085616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Partitioned fluid-solid coupling for cardiovascular blood flow: left-ventricular fluid mechanics.
    Krittian S; Janoske U; Oertel H; Böhlke T
    Ann Biomed Eng; 2010 Apr; 38(4):1426-41. PubMed ID: 20058187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of nanoparticle transport in airways using Petrov-Galerkin finite element methods.
    Rajaraman P; Heys JJ
    Int J Numer Method Biomed Eng; 2014 Jan; 30(1):103-16. PubMed ID: 23982945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2-D left ventricular flow estimation by combining speckle tracking with Navier-Stokes-based regularization: an in silico, in vitro and in vivo study.
    Gao H; Bijnens N; Coisne D; Lugiez M; Rutten M; D'hooge J
    Ultrasound Med Biol; 2015 Jan; 41(1):99-113. PubMed ID: 25438850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical simulation of blood flow in the left ventricle and aortic sinus using magnetic resonance imaging and computational fluid dynamics.
    Moosavi MH; Fatouraee N; Katoozian H; Pashaei A; Camara O; Frangi AF
    Comput Methods Biomech Biomed Engin; 2014 May; 17(7):740-9. PubMed ID: 22974145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A high-resolution computational model of the deforming human heart.
    Gurev V; Pathmanathan P; Fattebert JL; Wen HF; Magerlein J; Gray RA; Richards DF; Rice JJ
    Biomech Model Mechanobiol; 2015 Aug; 14(4):829-49. PubMed ID: 25567753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A generalized finite difference method for modeling cardiac electrical activation on arbitrary, irregular computational meshes.
    Trew ML; Smaill BH; Bullivant DP; Hunter PJ; Pullan AJ
    Math Biosci; 2005 Dec; 198(2):169-89. PubMed ID: 16140344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite-element neural networks for solving differential equations.
    Ramuhalli P; Udpa L; Udpa SS
    IEEE Trans Neural Netw; 2005 Nov; 16(6):1381-92. PubMed ID: 16342482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Reconstruction Method of Blood Flow Velocity in Left Ventricle Using Color Flow Ultrasound.
    Jang J; Ahn CY; Jeon K; Heo J; Lee D; Joo C; Choi JI; Seo JK
    Comput Math Methods Med; 2015; 2015():108274. PubMed ID: 26078773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A reduced computational and geometrical framework for inverse problems in hemodynamics.
    Lassila T; Manzoni A; Quarteroni A; Rozza G
    Int J Numer Method Biomed Eng; 2013 Jul; 29(7):741-76. PubMed ID: 23798318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quasi-static image-based immersed boundary-finite element model of left ventricle under diastolic loading.
    Gao H; Wang H; Berry C; Luo X; Griffith BE
    Int J Numer Method Biomed Eng; 2014 Nov; 30(11):1199-222. PubMed ID: 24799090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of branching blood flows on parallel computers.
    Yue X; Hwang FN; Shandas R; Cai XC
    Biomed Sci Instrum; 2004; 40():325-30. PubMed ID: 15133979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uniform Finite Element Error Estimates with Power-Type Asymptotic Constants for Unsteady Navier-Stokes Equations.
    Xie C; Wang K
    Entropy (Basel); 2022 Jul; 24(7):. PubMed ID: 35885169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.