These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 26991205)

  • 1. Structures and Dynamics of Glass-Forming Colloidal Liquids under Spherical Confinement.
    Zhang B; Cheng X
    Phys Rev Lett; 2016 Mar; 116(9):098302. PubMed ID: 26991205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growing point-to-set length scales in Lennard-Jones glass-forming liquids.
    Li YW; Xu WS; Sun ZY
    J Chem Phys; 2014 Mar; 140(12):124502. PubMed ID: 24697454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of confinement on supercooled tetrahedral liquids.
    Horstmann R; P Sanjon E; Drossel B; Vogel M
    J Chem Phys; 2019 Jun; 150(21):214704. PubMed ID: 31176331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Static correlations functions and domain walls in glass-forming liquids: the case of a sandwich geometry.
    Gradenigo G; Trozzo R; Cavagna A; Grigera TS; Verrocchio P
    J Chem Phys; 2013 Mar; 138(12):12A509. PubMed ID: 23556760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pinning susceptibility: a novel method to study growth of amorphous order in glass-forming liquids.
    Das R; Chakrabarty S; Karmakar S
    Soft Matter; 2017 Oct; 13(38):6929-6937. PubMed ID: 28837203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-wavelength fluctuations and static correlations in quasi-2D colloidal suspensions.
    Zhang B; Cheng X
    Soft Matter; 2019 May; 15(20):4087-4097. PubMed ID: 31074481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Static point-to-set correlations in glass-forming liquids.
    Berthier L; Kob W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011102. PubMed ID: 22400507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear dynamic response of glass-forming liquids to random pinning.
    Kob W; Coslovich D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052305. PubMed ID: 25493794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural signature of slow dynamics and dynamic heterogeneity in two-dimensional colloidal liquids: glassy structural order.
    Kawasaki T; Tanaka H
    J Phys Condens Matter; 2011 May; 23(19):194121. PubMed ID: 21525551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of attractions on correlation length scales in a glass-forming liquid.
    Xu WS; Sun ZY; An LJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041506. PubMed ID: 23214590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Does equilibrium polymerization describe the dynamic heterogeneity of glass-forming liquids?
    Douglas JF; Dudowicz J; Freed KF
    J Chem Phys; 2006 Oct; 125(14):144907. PubMed ID: 17042650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics and correlation length scales of a glass-forming liquid in quiescent and sheared conditions.
    Xu WS; Sun ZY; An LJ
    J Phys Condens Matter; 2012 Aug; 24(32):325101, 1-11. PubMed ID: 22647845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the dynamical slowing down process in soft glassy colloidal suspensions: comparisons with supercooled liquids.
    Saha D; Joshi YM; Bandyopadhyay R
    Soft Matter; 2014 May; 10(18):3292-300. PubMed ID: 24637644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of Glass Forming Liquids with Randomly Pinned Particles.
    Chakrabarty S; Karmakar S; Dasgupta C
    Sci Rep; 2015 Jul; 5():12577. PubMed ID: 26206070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurements of growing surface tension of amorphous-amorphous interfaces on approaching the colloidal glass transition.
    Ganapathi D; Nagamanasa KH; Sood AK; Ganapathy R
    Nat Commun; 2018 Jan; 9(1):397. PubMed ID: 29374262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gaussian excitations model for glass-former dynamics and thermodynamics.
    Matyushov DV; Angell CA
    J Chem Phys; 2007 Mar; 126(9):094501. PubMed ID: 17362109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-monotonic effect of confinement on the glass transition.
    Varnik F; Franosch T
    J Phys Condens Matter; 2016 Apr; 28(13):133001. PubMed ID: 26940539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glass Transition in Supercooled Liquids with Medium-Range Crystalline Order.
    Tah I; Sengupta S; Sastry S; Dasgupta C; Karmakar S
    Phys Rev Lett; 2018 Aug; 121(8):085703. PubMed ID: 30192617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Confinement as a tool to probe amorphous order.
    Cammarota C; Gradenigo G; Biroli G
    Phys Rev Lett; 2013 Sep; 111(10):107801. PubMed ID: 25166709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural origin of enhanced slow dynamics near a wall in glass-forming systems.
    Watanabe K; Kawasaki T; Tanaka H
    Nat Mater; 2011 May; 10(7):512-20. PubMed ID: 21623378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.