BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 26991295)

  • 1. Screening of Trichoderma isolates for their potential of biosorption of nickel and cadmium.
    Nongmaithem N; Roy A; Bhattacharya PM
    Braz J Microbiol; 2016; 47(2):305-13. PubMed ID: 26991295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosorption of nickel and cadmium by metal resistant bacterial isolates from agricultural soil irrigated with industrial wastewater.
    Ansari MI; Malik A
    Bioresour Technol; 2007 Nov; 98(16):3149-53. PubMed ID: 17166714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bio-removal of cadmium from aqueous solutions by filamentous fungi: Trichoderma spp. and Piriformospora indica.
    Yaghoubian Y; Siadat SA; Moradi Telavat MR; Pirdashti H; Yaghoubian I
    Environ Sci Pollut Res Int; 2019 Mar; 26(8):7863-7872. PubMed ID: 30680686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosorption of Ni, Cr and Cd by metal tolerant Aspergillus niger and Penicillium sp. using single and multi-metal solution.
    Ahmad I; Ansari MI; Aqil F
    Indian J Exp Biol; 2006 Jan; 44(1):73-6. PubMed ID: 16430095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-tolerant and siderophore producing Pseudomonas fluorescence and Trichoderma spp. improved the growth, biochemical features and yield attributes of chickpea by lowering Cd uptake.
    Syed A; Elgorban AM; Bahkali AH; Eswaramoorthy R; Iqbal RK; Danish S
    Sci Rep; 2023 Mar; 13(1):4471. PubMed ID: 36934106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioremediation potential of new cadmium, chromium, and nickel-resistant bacteria isolated from tropical agricultural soil.
    Minari GD; Saran LM; Lima Constancio MT; Correia da Silva R; Rosalen DL; José de Melo W; Carareto Alves LM
    Ecotoxicol Environ Saf; 2020 Nov; 204():111038. PubMed ID: 32739674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and Characterization of Nickel-Tolerant
    De Padua JC; Dela Cruz TEE
    J Fungi (Basel); 2021 Jul; 7(8):. PubMed ID: 34436130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of cadmium and nickel biosorption by Pseudomonas sp. via response surface methodology.
    Hosseini Zabet A; Ahmady-Asbchin S
    World J Microbiol Biotechnol; 2023 Mar; 39(5):135. PubMed ID: 36961587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosorption of heavy metals by dry biomass of metal tolerant bacterial biosorbents: an efficient metal clean-up strategy.
    Rizvi A; Ahmed B; Zaidi A; Khan MS
    Environ Monit Assess; 2020 Dec; 192(12):801. PubMed ID: 33263175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Native isolate of Trichoderma: a biocontrol agent with unique stress tolerance properties.
    Mishra N; Khan SS; Sundari SK
    World J Microbiol Biotechnol; 2016 Aug; 32(8):130. PubMed ID: 27339311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of the phytoremediation efficiency of Ricinus communis L. and methane uptake from cadmium and nickel-contaminated soil using spent mushroom substrate.
    Sun Y; Wen C; Liang X; He C
    Environ Sci Pollut Res Int; 2018 Nov; 25(32):32603-32616. PubMed ID: 30242654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydroponic screening of black locust families for heavy metal tolerance and accumulation.
    Župunski M; Borišev M; Orlović S; Arsenov D; Nikolić N; Pilipović A; Pajević S
    Int J Phytoremediation; 2016; 18(6):583-91. PubMed ID: 26332106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of genes of Trichoderma harzianum in response to the presence of cadmium in the substrate.
    Faedda R; Puglisi I; Sanzaro V; Petrone G; Cacciola SO
    Nat Prod Res; 2012; 26(24):2301-8. PubMed ID: 22400914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioremediation of Dichlorodiphenyltrichloroethane (DDT)-Contaminated Agricultural Soils: Potential of Two Autochthonous Saprotrophic Fungal Strains.
    Russo F; Ceci A; Pinzari F; Siciliano A; Guida M; Malusà E; Tartanus M; Miszczak A; Maggi O; Persiani AM
    Appl Environ Microbiol; 2019 Nov; 85(21):. PubMed ID: 31444208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Screening of Native
    Racić G; Vukelić I; Kordić B; Radić D; Lazović M; Nešić L; Panković D
    Microorganisms; 2023 Mar; 11(3):. PubMed ID: 36985388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of bacterial inoculation of strains of Pseudomonas aeruginosa, Alcaligenes feacalis and Bacillus subtilis on germination, growth and heavy metal (Cd, Cr, and Ni) uptake of Brassica juncea.
    Ndeddy Aka RJ; Babalola OO
    Int J Phytoremediation; 2016; 18(2):200-9. PubMed ID: 26503637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative analysis of the biosorption of cadmium, lead, nickel, and zinc by algae.
    Klimmek S; Stan HJ; Wilke A; Bunke G; Buchholz R
    Environ Sci Technol; 2001 Nov; 35(21):4283-8. PubMed ID: 11718343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal and recovery of nickel(II) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana: characterization studies.
    Akhtar N; Iqbal J; Iqbal M
    J Hazard Mater; 2004 Apr; 108(1-2):85-94. PubMed ID: 15081166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosorption of nickel by Lysinibacillus sp. BA2 native to bauxite mine.
    Prithviraj D; Deboleena K; Neelu N; Noor N; Aminur R; Balasaheb K; Abul M
    Ecotoxicol Environ Saf; 2014 Sep; 107():260-8. PubMed ID: 25011123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical mechanism of phytoremediation process of lead and cadmium pollution with Mucor circinelloides and Trichoderma asperellum.
    Zhang X; Li X; Yang H; Cui Z
    Ecotoxicol Environ Saf; 2018 Aug; 157():21-28. PubMed ID: 29605641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.