BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 26991303)

  • 1. Eichhornia azurea decomposition and the bacterial dynamic: an experimental research.
    Dahroug Z; Santana NF; Pagioro TA
    Braz J Microbiol; 2016; 47(2):279-86. PubMed ID: 26991303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implication of anaerobic and aerobic decomposition of Eichhornia azurea (Sw.) Kunth. on the carbon cycling in a subtropical reservoir.
    Bianchini Junior I; Cunha-Santino MB; Ribeiro JU; Penteado DG
    Braz J Biol; 2014 Feb; 74(1):100-10. PubMed ID: 25055091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphometry and retention time as forcing functions to establishment and maintenance of aquatic macrophytes in a tropical reservoir.
    Cunha-Santino MB; Fushita AT; Peret AC; Bianchini-Junior I
    Braz J Biol; 2016 May; 76(3):673-85. PubMed ID: 27143068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The invertebrate colonization during decomposition of Eichhornia azurea Kunth in a lateral lake in the mouth zone of Paranapanema River into Jurumirim reservoir (São Paulo, Brazil).
    Stripari NL; Henry R
    Braz J Biol; 2002 May; 62(2):293-310. PubMed ID: 12494917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colonization by Chironomidae larvae in decomposition leaves of Eichhornia azurea in a lentic system in Southeastern Brazil.
    da Silveira LS; Martins RT; da Silveira GA; Grazul RM; Lobo DP; Alves Rda G
    J Insect Sci; 2013; 13():20. PubMed ID: 23886040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decomposition characteristics of three different kinds of aquatic macrophytes and their potential application as carbon resource in constructed wetland.
    Wu S; He S; Zhou W; Gu J; Huang J; Gao L; Zhang X
    Environ Pollut; 2017 Dec; 231(Pt 1):1122-1133. PubMed ID: 28818519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aquatic macroinvertebrates associated with Eichhornia azurea (Swartz) Kunth and relationships with abiotic factors in marginal lentic ecosystems (São Paulo, Brazil).
    Silva CV; Henry R
    Braz J Biol; 2013 Feb; 73(1):149-62. PubMed ID: 23644797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water quality and communities associated with macrophytes in a shallow water-supply reservoir on an aquaculture farm.
    Sipaúba-Tavares LH; Dias SG
    Braz J Biol; 2014 May; 74(2):420-8. PubMed ID: 25166326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decomposition dynamic of two aquatic macrophytes Trapa bispinosa Roxb. and Nelumbo nucifera detritus.
    Zhou X; Feng D; Wen C; Liu D
    Environ Sci Pollut Res Int; 2018 Jun; 25(16):16177-16191. PubMed ID: 29594882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seasonal performance of aquatic macrophytes in improving physicochemical parameters of swine wastewater.
    Pinaffi CD; Scandelai APJ; Santos CH
    Braz J Biol; 2020; 80(4):897-906. PubMed ID: 31826080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular characterization of the endophytic fungal community associated with Eichhornia azurea (Kunth) and Eichhornia crassipes (Mart.) (Pontederiaceae) native to the Upper Paraná River floodplain, Brazil.
    Almeida TT; Orlandelli RC; Azevedo JL; Pamphile JA
    Genet Mol Res; 2015 May; 14(2):4920-31. PubMed ID: 25966267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong indirect effects of a submersed aquatic macrophyte, Vallisneria americana, on bacterioplankton densities in a mesotrophic lake.
    Huss AA; Wehr JD
    Microb Ecol; 2004 May; 47(4):305-15. PubMed ID: 15037963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen demand during mineralization of aquatic macrophytes from an oxbow lake.
    Bianchini I; Cunha-Santino MB; Peret AM
    Braz J Biol; 2008 Feb; 68(1):61-7. PubMed ID: 18470379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Curvulin and spirostaphylotrichins R and U from extracts produced by two endophytic
    de Almeida TT; Ribeiro MADS; Polonio JC; Garcia FP; Nakamura CV; Meurer EC; Sarragiotto MH; Baldoqui DC; Azevedo JL; Pamphile JA
    Nat Prod Res; 2018 Dec; 32(23):2783-2790. PubMed ID: 28948837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellulase activity and dissolved organic carbon release from lignocellulose macrophyte-derived in four trophic conditions.
    Bottino F; Cunha-Santino MB; Bianchini I
    Braz J Microbiol; 2016; 47(2):352-8. PubMed ID: 26991278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Biomass of Cornops aquaticum (Orthoptera: Acrididae) in wetlands of Northeast Argentina].
    Gallardo LI; Celeste Franceschini M; Guadalupe Poi AS; Laura de Wysiecki M
    Rev Biol Trop; 2015 Mar; 63(1):127-38. PubMed ID: 26299119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variations of bacterial community during the decomposition of Microcystis under different temperatures and biomass.
    Wang S; Zhao D; Zeng J; Xu H; Huang R; Jiao C; Guo L
    BMC Microbiol; 2019 Sep; 19(1):207. PubMed ID: 31484494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Environmental Effects of Algae Bloom Cluster: Impact on the Floating Plant Water Hyacinth Photosynthesis].
    Bao XM; Gu DX; Wu TT; Shi ZL; Liu GF; Han Shi-qun ; Zhou SQ; Zhou Q
    Huan Jing Ke Xue; 2015 Jun; 36(6):2070-6. PubMed ID: 26387309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellulase and xylanase activity during the decomposition of three aquatic macrophytes in a tropical oxbow lagoon.
    Sciessere L; Cunha-Santino MB; Bianchini I
    Braz J Microbiol; 2011 Jul; 42(3):909-18. PubMed ID: 24031706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of cadmium contamination on the eutrophic secondary pollution of aquatic macrophytes by litter decomposition.
    Zhao D; Li J; Lv L; Zhang M; Liu Z; An S
    J Environ Manage; 2019 Feb; 231():1100-1105. PubMed ID: 30602234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.