These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 26991333)

  • 1. H2 -Fueled ATP Synthesis on an Electrode: Mimicking Cellular Respiration.
    Gutiérrez-Sanz Ó; Natale P; Márquez I; Marques MC; Zacarias S; Pita M; Pereira IA; López-Montero I; De Lacey AL; Vélez M
    Angew Chem Int Ed Engl; 2016 May; 55(21):6216-20. PubMed ID: 26991333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of a proton gradient across a gold-supported biomimetic membrane by electroenzymatic H2 oxidation.
    Gutiérrez-Sanz Ó; Tapia C; Marques MC; Zacarias S; Vélez M; Pereira IA; De Lacey AL
    Angew Chem Int Ed Engl; 2015 Feb; 54(9):2684-7. PubMed ID: 25600156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox-Polymer-Wired [NiFeSe] Hydrogenase Variants with Enhanced O
    Ruff A; Szczesny J; Vega M; Zacarias S; Matias PM; Gounel S; Mano N; Pereira IAC; Schuhmann W
    ChemSusChem; 2020 Jul; 13(14):3627-3635. PubMed ID: 32339386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Boric Acid-Fueled ATP Synthesis by F
    Xu X; Fei J; Xu Y; Li G; Dong W; Xue H; Li J
    Angew Chem Int Ed Engl; 2021 Mar; 60(14):7617-7620. PubMed ID: 33369011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infrared Spectroscopy During Electrocatalytic Turnover Reveals the Ni-L Active Site State During H2 Oxidation by a NiFe Hydrogenase.
    Hidalgo R; Ash PA; Healy AJ; Vincent KA
    Angew Chem Int Ed Engl; 2015 Jun; 54(24):7110-3. PubMed ID: 25925315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy conservation by a hydrogenase-dependent chemiosmotic mechanism in an ancient metabolic pathway.
    Schoelmerich MC; Müller V
    Proc Natl Acad Sci U S A; 2019 Mar; 116(13):6329-6334. PubMed ID: 30850546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy-converting hydrogenases: the link between H
    Schoelmerich MC; Müller V
    Cell Mol Life Sci; 2020 Apr; 77(8):1461-1481. PubMed ID: 31630229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oriented immobilization of Desulfovibrio gigas hydrogenase onto carbon electrodes by covalent bonds for nonmediated oxidation of H2.
    Rüdiger O; Abad JM; Hatchikian EC; Fernandez VM; De Lacey AL
    J Am Chem Soc; 2005 Nov; 127(46):16008-9. PubMed ID: 16287271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thiol oxidation of mitochondrial F0-c subunits: a way to switch off antimicrobial drug targets of the mitochondrial ATP synthase.
    Nesci S; Ventrella V; Trombetti F; Pirini M; Pagliarani A
    Med Hypotheses; 2014 Aug; 83(2):160-5. PubMed ID: 24932580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energetic signalling in the control of mitochondrial F1F0 ATP synthase activity in health and disease.
    Grover GJ; Marone PA; Koetzner L; Seto-Young D
    Int J Biochem Cell Biol; 2008; 40(12):2698-701. PubMed ID: 18707016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemiosmotic energy conversion of the archaebacterial thermoacidophile Sulfolobus acidocaldarius: oxidative phosphorylation and the presence of an F0-related N,N'-dicyclohexylcarbodiimide-binding proteolipid.
    Lübben M; Schäfer G
    J Bacteriol; 1989 Nov; 171(11):6106-16. PubMed ID: 2478523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oriented immobilization of a membrane-bound hydrogenase onto an electrode for direct electron transfer.
    Gutiérrez-Sánchez C; Olea D; Marques M; Fernández VM; Pereira IA; Vélez M; De Lacey AL
    Langmuir; 2011 May; 27(10):6449-57. PubMed ID: 21491850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis of proton translocation and force generation in mitochondrial ATP synthase.
    Klusch N; Murphy BJ; Mills DJ; Yildiz Ö; Kühlbrandt W
    Elife; 2017 Dec; 6():. PubMed ID: 29210357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The a subunit asymmetry dictates the two opposite rotation directions in the synthesis and hydrolysis of ATP by the mitochondrial ATP synthase.
    Nesci S; Trombetti F; Ventrella V; Pagliarani A
    Med Hypotheses; 2015 Jan; 84(1):53-7. PubMed ID: 25497387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemistry, AFM, and PM-IRRA spectroscopy of immobilized hydrogenase: role of a hydrophobic helix in enzyme orientation for efficient H2 oxidation.
    Ciaccafava A; Infossi P; Ilbert M; Guiral M; Lecomte S; Giudici-Orticoni MT; Lojou E
    Angew Chem Int Ed Engl; 2012 Jan; 51(4):953-6. PubMed ID: 22173906
    [No Abstract]   [Full Text] [Related]  

  • 16. Interactions of gamma T273 and gamma E275 with the beta subunit PSAV segment that links the gamma subunit to the catalytic site Walker homology B aspartate are important to the function of Escherichia coli F1F0 ATP synthase.
    Boltz KW; Frasch WD
    Biochemistry; 2005 Jul; 44(27):9497-506. PubMed ID: 15996104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid Amyloid-Based Redox Hydrogel for Bioelectrocatalytic H
    Duraffourg N; Leprince M; Crouzy S; Hamelin O; Usson Y; Signor L; Cavazza C; Forge V; Albertin L
    Angew Chem Int Ed Engl; 2021 Jun; 60(26):14488-14497. PubMed ID: 33871139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-bilayer structures in mitochondrial membranes regulate ATP synthase activity.
    Gasanov SE; Kim AA; Yaguzhinsky LS; Dagda RK
    Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):586-599. PubMed ID: 29179995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bovine F1Fo ATP synthase monomers bend the lipid bilayer in 2D membrane crystals.
    Jiko C; Davies KM; Shinzawa-Itoh K; Tani K; Maeda S; Mills DJ; Tsukihara T; Fujiyoshi Y; Kühlbrandt W; Gerle C
    Elife; 2015 Mar; 4():e06119. PubMed ID: 25815585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactivation of standard [NiFe]-hydrogenase and bioelectrochemical catalysis of proton reduction and hydrogen oxidation in a mediated-electron-transfer system.
    Shiraiwa S; So K; Sugimoto Y; Kitazumi Y; Shirai O; Nishikawa K; Higuchi Y; Kano K
    Bioelectrochemistry; 2018 Oct; 123():156-161. PubMed ID: 29753939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.