These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 26991431)

  • 21. Nuclear DNA replication and repair in parasites of the genus Leishmania: Exploiting differences to develop innovative therapeutic approaches.
    Uzcanga G; Lara E; Gutiérrez F; Beaty D; Beske T; Teran R; Navarro JC; Pasero P; Benítez W; Poveda A
    Crit Rev Microbiol; 2017 Mar; 43(2):156-177. PubMed ID: 27960617
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbonic anhydrases from Trypanosoma and Leishmania as anti-protozoan drug targets.
    Vermelho AB; Capaci GR; Rodrigues IA; Cardoso VS; Mazotto AM; Supuran CT
    Bioorg Med Chem; 2017 Mar; 25(5):1543-1555. PubMed ID: 28161253
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development and validation of four Leishmania species constitutively expressing GFP protein. A model for drug discovery and disease pathogenesis studies.
    Patel AP; Deacon A; Getti G
    Parasitology; 2014 Apr; 141(4):501-10. PubMed ID: 24252638
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The enemy within: Targeting host-parasite interaction for antileishmanial drug discovery.
    Lamotte S; Späth GF; Rachidi N; Prina E
    PLoS Negl Trop Dis; 2017 Jun; 11(6):e0005480. PubMed ID: 28594938
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mitochondria and lipid raft-located FOF1-ATP synthase as major therapeutic targets in the antileishmanial and anticancer activities of ether lipid edelfosine.
    Villa-Pulgarín JA; Gajate C; Botet J; Jimenez A; Justies N; Varela-M RE; Cuesta-Marbán Á; Müller I; Modolell M; Revuelta JL; Mollinedo F
    PLoS Negl Trop Dis; 2017 Aug; 11(8):e0005805. PubMed ID: 28829771
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protease inhibitors in potential drug development for Leishmaniasis.
    Das P; Alam MN; Paik D; Karmakar K; De T; Chakraborti T
    Indian J Biochem Biophys; 2013 Oct; 50(5):363-76. PubMed ID: 24772958
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gene Replacement by Homologous Recombination.
    Zirpel H; Clos J
    Methods Mol Biol; 2019; 1971():169-188. PubMed ID: 30980303
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel fragment-based QSAR modeling and combinatorial design of pyrazole-derived CRK3 inhibitors as potent antileishmanials.
    Goyal S; Dhanjal JK; Tyagi C; Goyal M; Grover A
    Chem Biol Drug Des; 2014 Jul; 84(1):54-62. PubMed ID: 24447365
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glycobiology of the Leishmania parasite and emerging targets for antileishmanial drug discovery.
    Chandra S; Ruhela D; Deb A; Vishwakarma RA
    Expert Opin Ther Targets; 2010 Jul; 14(7):739-57. PubMed ID: 20536412
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improvement of the green fluorescent protein reporter system in Leishmania spp. for the in vitro and in vivo screening of antileishmanial drugs.
    Pulido SA; Muñoz DL; Restrepo AM; Mesa CV; Alzate JF; Vélez ID; Robledo SM
    Acta Trop; 2012 Apr; 122(1):36-45. PubMed ID: 22155571
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selective killing of Leishmania amastigotes expressing a thymidine kinase suicide gene.
    Muyombwe A; Olivier M; Ouellette M; Papadopoulou B
    Exp Parasitol; 1997 Jan; 85(1):35-42. PubMed ID: 9024200
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Leishmania spp.: proficiency of drug-resistant parasites.
    Natera S; Machuca C; Padrón-Nieves M; Romero A; Díaz E; Ponte-Sucre A
    Int J Antimicrob Agents; 2007 Jun; 29(6):637-42. PubMed ID: 17353113
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Probing druggability and biological function of essential proteins in Leishmania combining facilitated null mutant and plasmid shuffle analyses.
    Dacher M; Morales MA; Pescher P; Leclercq O; Rachidi N; Prina E; Cayla M; Descoteaux A; Späth GF
    Mol Microbiol; 2014 Jul; 93(1):146-66. PubMed ID: 24823804
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new, rapid and sensitive bioluminescence assay for drug screening on Leishmania.
    Paloque L; Vidal N; Casanova M; Dumètre A; Verhaeghe P; Parzy D; Azas N
    J Microbiol Methods; 2013 Dec; 95(3):320-3. PubMed ID: 24055386
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Colorimetric assay for screening compounds against Leishmania amastigotes grown in macrophages.
    Buckner FS; Wilson AJ
    Am J Trop Med Hyg; 2005 May; 72(5):600-5. PubMed ID: 15891135
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proteomic analysis of miltefosine-resistant Leishmania reveals the possible involvement of eukaryotic initiation factor 4A (eIF4A).
    Singh G; Chavan HD; Dey CS
    Int J Antimicrob Agents; 2008 Jun; 31(6):584-6. PubMed ID: 18456462
    [No Abstract]   [Full Text] [Related]  

  • 37. Plasmodium and Leishmania: the role of mdr genes in mediating drug resistance.
    Chow LM; Volkman SK
    Exp Parasitol; 1998 Sep; 90(1):135-41. PubMed ID: 9709040
    [No Abstract]   [Full Text] [Related]  

  • 38. Gene amplification in amphotericin B-resistant Leishmania tarentolae.
    Singh AK; Papadopoulou B; Ouellette M
    Exp Parasitol; 2001 Nov; 99(3):141-7. PubMed ID: 11846524
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computational and Investigative Study of Flavonoids Active Against Typanosoma cruzi and Leishmania spp.
    Ribeiro FF; Junior FJ; da Silva MS; Scotti MT; Scotti L
    Nat Prod Commun; 2015 Jun; 10(6):917-20. PubMed ID: 26197515
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Auranofin is an apoptosis-simulating agent with in vitro and in vivo anti-leishmanial activity.
    Sharlow ER; Leimgruber S; Murray S; Lira A; Sciotti RJ; Hickman M; Hudson T; Leed S; Caridha D; Barrios AM; Close D; Grögl M; Lazo JS
    ACS Chem Biol; 2014 Mar; 9(3):663-72. PubMed ID: 24328400
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.