These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 26991636)
1. Indirect three-dimensional printing: A method for fabricating polyurethane-urea based cardiac scaffolds. Hernández-Córdova R; Mathew DA; Balint R; Carrillo-Escalante HJ; Cervantes-Uc JM; Hidalgo-Bastida LA; Hernández-Sánchez F J Biomed Mater Res A; 2016 Aug; 104(8):1912-21. PubMed ID: 26991636 [TBL] [Abstract][Full Text] [Related]
2. Three-Dimensional Printing of Biodegradable Piperazine-Based Polyurethane-Urea Scaffolds with Enhanced Osteogenesis for Bone Regeneration. Ma Y; Hu N; Liu J; Zhai X; Wu M; Hu C; Li L; Lai Y; Pan H; Lu WW; Zhang X; Luo Y; Ruan C ACS Appl Mater Interfaces; 2019 Mar; 11(9):9415-9424. PubMed ID: 30698946 [TBL] [Abstract][Full Text] [Related]
3. A new method of fabricating a blend scaffold using an indirect three-dimensional printing technique. Jung JW; Lee H; Hong JM; Park JH; Shim JH; Choi TH; Cho DW Biofabrication; 2015 Nov; 7(4):045003. PubMed ID: 26525821 [TBL] [Abstract][Full Text] [Related]
4. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051 [TBL] [Abstract][Full Text] [Related]
5. Manufacturing of biodegradable polyurethane scaffolds based on polycaprolactone using a phase separation method: physical properties and in vitro assay. Asefnejad A; Khorasani MT; Behnamghader A; Farsadzadeh B; Bonakdar S Int J Nanomedicine; 2011; 6():2375-84. PubMed ID: 22072874 [TBL] [Abstract][Full Text] [Related]
6. Rapid Fabrication of Anatomically-Shaped Bone Scaffolds Using Indirect 3D Printing and Perfusion Techniques. Grottkau BE; Hui Z; Yao Y; Pang Y Int J Mol Sci; 2020 Jan; 21(1):. PubMed ID: 31906530 [TBL] [Abstract][Full Text] [Related]
7. Stiffness memory nanohybrid scaffolds generated by indirect 3D printing for biologically responsive soft implants. Wu L; Virdee J; Maughan E; Darbyshire A; Jell G; Loizidou M; Emberton M; Butler P; Howkins A; Reynolds A; Boyd IW; Birchall M; Song W Acta Biomater; 2018 Oct; 80():188-202. PubMed ID: 30223094 [TBL] [Abstract][Full Text] [Related]
8. Synthesis and characterization of electrospun nanofibrous tissue engineering scaffolds generated from in situ polymerization of ionomeric polyurethane composites. Chan JP; Battiston KG; Santerre JP Acta Biomater; 2019 Sep; 96():161-174. PubMed ID: 31254683 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of a polyvinyl alcohol-alginate based hydrogel for precise 3D bioprinting. Yu F; Han X; Zhang K; Dai B; Shen S; Gao X; Teng H; Wang X; Li L; Ju H; Wang W; Zhang J; Jiang Q J Biomed Mater Res A; 2018 Nov; 106(11):2944-2954. PubMed ID: 30329209 [TBL] [Abstract][Full Text] [Related]
10. Fabrication and characterization of shape memory polyurethane porous scaffold for bone tissue engineering. Yu J; Xia H; Teramoto A; Ni QQ J Biomed Mater Res A; 2017 Apr; 105(4):1132-1137. PubMed ID: 28120551 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of electrospun thermoplastic polyurethane blended poly (l-lactide-co-e-caprolactone) microyarn scaffolds for engineering of female pelvic-floor tissue. Hou M; Wu Q; Dai M; Xu P; Gu C; Jia X; Feng J; Mo X Biomed Mater; 2014 Dec; 10(1):015005. PubMed ID: 25546879 [TBL] [Abstract][Full Text] [Related]
12. The effect of hydroxyapatite nanoparticles on mechanical behavior and biological performance of porous shape memory polyurethane scaffolds. Yu J; Xia H; Teramoto A; Ni QQ J Biomed Mater Res A; 2018 Jan; 106(1):244-254. PubMed ID: 28880433 [TBL] [Abstract][Full Text] [Related]
13. Fabrication of three-dimensional porous scaffolds with controlled filament orientation and large pore size via an improved E-jetting technique. Li JL; Cai YL; Guo YL; Fuh JY; Sun J; Hong GS; Lam RN; Wong YS; Wang W; Tay BY; Thian ES J Biomed Mater Res B Appl Biomater; 2014 May; 102(4):651-8. PubMed ID: 24155124 [TBL] [Abstract][Full Text] [Related]
14. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. Bendtsen ST; Quinnell SP; Wei M J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519 [TBL] [Abstract][Full Text] [Related]
15. Influence of scaffold design on 3D printed cell constructs. Souness A; Zamboni F; Walker GM; Collins MN J Biomed Mater Res B Appl Biomater; 2018 Feb; 106(2):533-545. PubMed ID: 28194931 [TBL] [Abstract][Full Text] [Related]
16. A novel waterborne polyurethane with biodegradability and high flexibility for 3D printing. Feng Z; Wang D; Zheng Y; Zhao L; Xu T; Guo Z; Irfan Hussain M; Zeng J; Lou L; Sun Y; Jiang H Biofabrication; 2020 May; 12(3):035015. PubMed ID: 32150742 [TBL] [Abstract][Full Text] [Related]
17. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction. Park HJ; Min KD; Lee MC; Kim SH; Lee OJ; Ju HW; Moon BM; Lee JM; Park YR; Kim DW; Jeong JY; Park CH J Biomed Mater Res A; 2016 Jul; 104(7):1779-87. PubMed ID: 26999521 [TBL] [Abstract][Full Text] [Related]
18. Fabrication of scalable tissue engineering scaffolds with dual-pore microarchitecture by combining 3D printing and particle leaching. Mohanty S; Sanger K; Heiskanen A; Trifol J; Szabo P; Dufva M; Emnéus J; Wolff A Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():180-9. PubMed ID: 26838839 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and 3D printing of biodegradable polyurethane elastomer by a water-based process for cartilage tissue engineering applications. Hung KC; Tseng CS; Hsu SH Adv Healthc Mater; 2014 Oct; 3(10):1578-87. PubMed ID: 24729580 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]