BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 26991843)

  • 1. Valorisation of untreated cane molasses for enhanced phytase production by Bacillus subtilis K46b and its potential role in dephytinisation.
    Rocky-Salimi K; Hashemi M; Safari M; Mousivand M
    J Sci Food Agric; 2017 Jan; 97(1):222-229. PubMed ID: 26991843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A cost-effective cane molasses medium for enhanced cell-bound phytase production by Pichia anomala.
    Vohra A; Satyanarayana T
    J Appl Microbiol; 2004; 97(3):471-6. PubMed ID: 15281926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A marked enhancement in phytase production by a thermophilic mould Sporotrichum thermophile using statistical designs in a cost-effective cane molasses medium.
    Singh B; Satyanarayana T
    J Appl Microbiol; 2006 Aug; 101(2):344-52. PubMed ID: 16882141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytase production by Sporotrichum thermophile in a cost-effective cane molasses medium in submerged fermentation and its application in bread.
    Singh B; Satyanarayana T
    J Appl Microbiol; 2008 Dec; 105(6):1858-65. PubMed ID: 19120634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Phytase Production by Bacillus subtilis subsp. subtilis in Solid State Fermentation and its Utility in Improving Food Nutrition.
    Singh B; Kumar G; Kumar V; Singh D
    Protein Pept Lett; 2021; 28(10):1083-1089. PubMed ID: 34303326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytase Production and Development of an Ideal Dephytinization Process for Amelioration of Food Nutrition Using Microbial Phytases.
    Jain J; Singh B
    Appl Biochem Biotechnol; 2017 Apr; 181(4):1485-1495. PubMed ID: 27796873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced phytase production from Achromobacter sp. PB-01 using wheat bran as substrate: prospective application for animal feed.
    Kumar P; Chamoli S; Agrawal S
    Biotechnol Prog; 2012; 28(6):1432-42. PubMed ID: 22915503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of low-phytic acid corn, low-phytic acid soybean meal, and phytase on nutrient digestibility and excretion in growing pigs.
    Hill BE; Sutton AL; Richert BT
    J Anim Sci; 2009 Apr; 87(4):1518-27. PubMed ID: 19028841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytase production by Aspergillus oryzae in solid-state fermentation and its applicability in dephytinization of wheat bran [corrected].
    Sapna ; Singh B
    Appl Biochem Biotechnol; 2014 Aug; 173(7):1885-95. PubMed ID: 24879597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative evaluation of extracellular β-d-fructofuranosidase in submerged and solid-state fermentation produced by newly identified Bacillus subtilis strain.
    Lincoln L; More SS
    J Appl Microbiol; 2018 Aug; 125(2):441-456. PubMed ID: 29663625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of phytase production by solid substrate fermentation.
    Bogar B; Szakacs G; Linden JC; Pandey A; Tengerdy RP
    J Ind Microbiol Biotechnol; 2003 Mar; 30(3):183-9. PubMed ID: 12715256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production and characterization of a novel, thermotolerant fungal phytase from agro-industrial byproducts for cattle feed.
    Kumari N; Bansal S
    Biotechnol Lett; 2021 Apr; 43(4):865-879. PubMed ID: 33387113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dephytinization of wheat and rice bran by cross-linked enzyme aggregates of Mucor indicus phytase: a viable prospect for food and feed industries.
    Venkataraman S; Vaidyanathan VK
    J Sci Food Agric; 2023 Mar; 103(4):1935-1945. PubMed ID: 36408806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of Molasses and Soybean Meal Content to Enhance Tetramethylpyrazine Yield by
    Li Y; Gan S; Luo L; Yang W; Mo L; Shang C
    Molecules; 2023 Sep; 28(18):. PubMed ID: 37764292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-efficiency removal of phytic acid in soy meal using two-stage temperature-induced Aspergillus oryzae solid-state fermentation.
    Chen L; Vadlani PV; Madl RL
    J Sci Food Agric; 2014 Jan; 94(1):113-8. PubMed ID: 23633040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research Note: Evaluation of a precision-fed rooster assay for determination of phytic acid disappearance in feedstuffs.
    Parsons BW; Utterback PL; Parsons CM; Rochell SJ; Emmert JL
    Poult Sci; 2023 Feb; 102(2):102356. PubMed ID: 36493548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative evaluation of agroindustrial byproducts for the production of alkaline protease by wild and mutant strains of Bacillus subtilis in submerged and solid state fermentation.
    Mukhtar H; Haq I
    ScientificWorldJournal; 2013; 2013():538067. PubMed ID: 24294129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Economical production of poly(γ-glutamic acid) using untreated cane molasses and monosodium glutamate waste liquor by Bacillus subtilis NX-2.
    Zhang D; Feng X; Zhou Z; Zhang Y; Xu H
    Bioresour Technol; 2012 Jun; 114():583-8. PubMed ID: 22465581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytase production by solid-state fermentation of groundnut oil cake by Aspergillus niger: A bioprocess optimization study for animal feedstock applications.
    Buddhiwant P; Bhavsar K; Kumar VR; Khire JM
    Prep Biochem Biotechnol; 2016 Aug; 46(6):531-8. PubMed ID: 26176365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement and Metabolomics-Based Analysis of d-Lactic Acid Production from Agro-Industrial Wastes by
    Liang S; Jiang W; Song Y; Zhou SF
    J Agric Food Chem; 2020 Jul; 68(29):7660-7669. PubMed ID: 32603099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.