BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 26991951)

  • 1. Greatly Enhanced Fluorescence by Increasing the Structural Rigidity of an Imine: Enantioselective Recognition of 1,2-Cyclohexanediamine by a Chiral Aldehyde.
    Xu Y; Yu S; Chen Q; Chen X; Xiao M; Chen L; Yu X; Xu Y; Pu L
    Chemistry; 2016 Apr; 22(17):5963-8. PubMed ID: 26991951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous Determination of Concentration and Enantiomeric Composition in Fluorescent Sensing.
    Pu L
    Acc Chem Res; 2017 Apr; 50(4):1032-1040. PubMed ID: 28287702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Highly Fluorinated Chiral Aldehyde for Enantioselective Fluorescent Recognition in a Biphasic System.
    Wang C; Wu X; Pu L
    Chemistry; 2017 Aug; 23(45):10749-10752. PubMed ID: 28675621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enantioselective fluorescent sensors: a tale of BINOL.
    Pu L
    Acc Chem Res; 2012 Feb; 45(2):150-63. PubMed ID: 21834528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enantioselective fluorescent recognition in the fluorous phase: enhanced reactivity and expanded chiral recognition.
    Wang C; Wu E; Wu X; Xu X; Zhang G; Pu L
    J Am Chem Soc; 2015 Mar; 137(11):3747-50. PubMed ID: 25761050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Enantioselectivity in the Fluorescent Recognition of a Chiral Diamine by Using a Bisbinaphthyl Dialdehyde.
    Zeng C; Zhang X; Pu L
    ACS Omega; 2018 Oct; 3(10):12545-12548. PubMed ID: 31457988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational design of a fluorescent sensor to simultaneously determine both the enantiomeric composition and the concentration of chiral functional amines.
    Wen K; Yu S; Huang Z; Chen L; Xiao M; Yu X; Pu L
    J Am Chem Soc; 2015 Apr; 137(13):4517-24. PubMed ID: 25790271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A chiral porous metal-organic framework for highly sensitive and enantioselective fluorescence sensing of amino alcohols.
    Wanderley MM; Wang C; Wu CD; Lin W
    J Am Chem Soc; 2012 Jun; 134(22):9050-3. PubMed ID: 22607498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of the fluorescent properties of partially hydrogenated 1,1'-bi-2-naphthol-amine molecules and their use for enantioselective fluorescent recognition.
    Yu S; DeBerardinis AM; Turlington M; Pu L
    J Org Chem; 2011 Apr; 76(8):2814-9. PubMed ID: 21405012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Enantioselective Fluorescent Recognition of Both Unfunctionalized and Functionalized Chiral Amines by a Facile Amide Formation from a Perfluoroalkyl Ketone.
    Wang C; Anbaei P; Pu L
    Chemistry; 2016 May; 22(21):7255-61. PubMed ID: 27061205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A convenient fluorescent method to simultaneously determine the enantiomeric composition and concentration of functional chiral amines.
    Huang Z; Yu S; Zhao X; Wen K; Xu Y; Yu X; Xu Y; Pu L
    Chemistry; 2014 Dec; 20(50):16458-61. PubMed ID: 25348091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chiral BINOL-Based Covalent Organic Frameworks for Enantioselective Sensing.
    Wu X; Han X; Xu Q; Liu Y; Yuan C; Yang S; Liu Y; Jiang J; Cui Y
    J Am Chem Soc; 2019 May; 141(17):7081-7089. PubMed ID: 30971083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diastereoselective imine-bond formation through complementary double-helix formation.
    Yamada H; Furusho Y; Yashima E
    J Am Chem Soc; 2012 May; 134(17):7250-3. PubMed ID: 22506852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular recognition of aliphatic diamines by 3,3'-di(trifluoroacetyl)-1,1'-bi-2-naphthol.
    Yu S; Plunkett W; Kim M; Wu E; Sabat M; Pu L
    J Org Chem; 2013 Dec; 78(24):12671-80. PubMed ID: 24283254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enantioselective fluorescent recognition of mandelic acid by unsymmetrical salalen and salan sensors.
    Yang X; Liu X; Shen K; Fu Y; Zhang M; Zhu C; Cheng Y
    Org Biomol Chem; 2011 Sep; 9(17):6011-21. PubMed ID: 21743928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Furo-fused BINOL based crown as a fluorescent chiral sensor for enantioselective recognition of phenylethylamine and ethyl ester of valine.
    Upadhyay SP; Pissurlenkar RR; Coutinho EC; Karnik AV
    J Org Chem; 2007 Jul; 72(15):5709-14. PubMed ID: 17580908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conjugated polymer-enhanced enantioselectivity in fluorescent sensing.
    Zhang X; Wang C; Wang P; Du J; Zhang G; Pu L
    Chem Sci; 2016 Jun; 7(6):3614-3620. PubMed ID: 29997853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chiral fluorescent sensor based on H
    Zhang Y; Wang H; Yu H; Sun X
    RSC Adv; 2022 Apr; 12(19):11967-11973. PubMed ID: 35481074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regio- and Enantioselective Macrocyclization from Dynamic Imine Formation: Chemo- and Enantioselective Fluorescent Recognition of Lysine.
    Mao Y; Davis S; Pu L
    Org Lett; 2023 Oct; 25(42):7639-7644. PubMed ID: 37843813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hg(2+) -induced in situ generated radical cation of (S)-BINOL-based polymer for highly enantioselective recognition of phenylalaninol.
    Jiao J; Li F; Zhang S; Quan Y; Zheng W; Cheng Y; Zhu C
    Macromol Rapid Commun; 2014 Aug; 35(16):1443-9. PubMed ID: 25048009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.