BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 26991951)

  • 21. A new chiral binaphthalene-based fluorescence polymer sensor for the highly enantioselective recognition of phenylalaninol.
    Wei G; Zhang S; Dai C; Quan Y; Cheng Y; Zhu C
    Chemistry; 2013 Nov; 19(47):16066-71. PubMed ID: 24123510
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure of a Dimeric BINOL-Imine-Zn(II) Complex and Its Role in Enantioselective Fluorescent Recognition.
    Guo K; Wang P; Tan W; Li Y; Gao X; Wang Q; Pu L
    Inorg Chem; 2020 Dec; 59(24):17992-17998. PubMed ID: 33136378
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Facile synthesis of a family of H8BINOL-amine compounds and catalytic asymmetric arylzinc addition to aldehydes.
    DeBerardinis AM; Turlington M; Ko J; Sole L; Pu L
    J Org Chem; 2010 May; 75(9):2836-50. PubMed ID: 20377255
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polymer Amplified Enantioselectivity in the Fluorescent Recognition of Prolinol.
    Wang Y; Hu L; Zhao F; Yu S; Tian J; Shi D; Wang X; Yu X; Pu L
    Chemistry; 2017 Dec; 23(70):17678-17681. PubMed ID: 29105166
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel binuclear chiral zirconium catalysts used in enantioselective strecker reactions.
    Kobayashi S; Ishitani H
    Chirality; 2000 Jun; 12(5-6):540-3. PubMed ID: 10824184
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A highly fluorescent metallosalalen-based chiral cage for enantioselective recognition and sensing.
    Dong J; Zhou Y; Zhang F; Cui Y
    Chemistry; 2014 May; 20(21):6455-61. PubMed ID: 24710843
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enantioselective Fluorescence Recognition of Free α-Amino Acids by Ion-Type Ammonium Salt-Based Sensors.
    Bai L; Li C; Wei D; Xu C
    J Fluoresc; 2023 Dec; ():. PubMed ID: 38157083
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pseudoenantiomeric fluorescent sensors in a chiral assay.
    Yu S; Pu L
    J Am Chem Soc; 2010 Dec; 132(50):17698-700. PubMed ID: 21121601
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fluorescence recognition of chiral amino alcohols by using a novel ionic liquid sensor.
    Cai P; Wu D; Zhao X; Pan Y
    Analyst; 2017 Aug; 142(16):2961-2966. PubMed ID: 28726877
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enantioselective recognition of carboxylic acids by novel fluorescent triazine-based thiazoles.
    Halay E; Bozkurt S
    Chirality; 2018 Mar; 30(3):275-283. PubMed ID: 29210117
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sui Generis Helicene-Based Supramolecular Chirogenic System: Enantioselective Sensing, Solvent Control, and Application in Chiral Group Transfer Reaction.
    Hasan M; Khose VN; Mori T; Borovkov V; Karnik AV
    ACS Omega; 2017 Feb; 2(2):592-598. PubMed ID: 31457457
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fluorescent Recognition of Zn
    Song T; Cao Y; Zhao G; Pu L
    Inorg Chem; 2017 Apr; 56(8):4395-4399. PubMed ID: 28345893
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Near-IR Fluorescent Recognition of Arginine: High Chemoselectivity and Enantioselectivity Promoted by La
    Guo H; Yang J; Zeng J; Yu X; Yu S; Pu L
    Chempluschem; 2023 Jun; 88(6):e202300138. PubMed ID: 37163301
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly enantioselective extraction of underivatized amino acids by the uryl-pendant hydroxyphenyl-binol ketone.
    Huang H; Chen Q; Choi M; Nandhakumar R; Su Z; Ham S; Kim KM
    Chemistry; 2014 Mar; 20(10):2895-900. PubMed ID: 24488727
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enantioselective recognition of 1,2-amino alcohols by reversible formation of imines with resonance-assisted hydrogen bonds.
    Kim KM; Park H; Kim HJ; Chin J; Nam W
    Org Lett; 2005 Aug; 7(16):3525-7. PubMed ID: 16048333
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enantioselective recognition of mandelic acid by a 3,6-dithiophen-2-yl-9H-carbazole-based chiral fluorescent bisboronic acid sensor.
    Wu Y; Guo H; James TD; Zhao J
    J Org Chem; 2011 Jul; 76(14):5685-95. PubMed ID: 21619028
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Experimental analysis of the catalytic cycle of the borane-promoted imine reduction with hydrosilanes: spectroscopic detection of unexpected intermediates and a refined mechanism.
    Hermeke J; Mewald M; Oestreich M
    J Am Chem Soc; 2013 Nov; 135(46):17537-46. PubMed ID: 24180217
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Salen-based chiral fluorescence polymer sensor for enantioselective recognition of α-hydroxyl carboxylic acids.
    Song F; Wei G; Wang L; Jiao J; Cheng Y; Zhu C
    J Org Chem; 2012 May; 77(10):4759-64. PubMed ID: 22554263
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Catalytic asymmetric allylation of aldehydes and related reactions with bis(((S)-binaphthoxy)(isopropoxy)titanium) oxide as a mu-oxo-type chiral Lewis acid.
    Hanawa H; Uraguchi D; Konishi S; Hashimoto T; Maruoka K
    Chemistry; 2003 Sep; 9(18):4405-13. PubMed ID: 14502627
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coumarin-based chiral fluorescence sensor incorporating a thiourea unit for highly enantioselective recognition of N-Boc-protected proline.
    Xing Z; Fu Y; Zhou J; Zhu C; Cheng Y
    Org Biomol Chem; 2012 May; 10(20):4024-8. PubMed ID: 22499431
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.