These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 26992060)

  • 1. 3D Printing of Conductive Complex Structures with In Situ Generation of Silver Nanoparticles.
    Fantino E; Chiappone A; Roppolo I; Manfredi D; Bongiovanni R; Pirri CF; Calignano F
    Adv Mater; 2016 May; 28(19):3712-7. PubMed ID: 26992060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Printing: 3D Printing of Conductive Complex Structures with In Situ Generation of Silver Nanoparticles (Adv. Mater. 19/2016).
    Fantino E; Chiappone A; Roppolo I; Manfredi D; Bongiovanni R; Pirri CF; Calignano F
    Adv Mater; 2016 May; 28(19):3711. PubMed ID: 27167030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Printed PEG-Based Hybrid Nanocomposites Obtained by Sol-Gel Technique.
    Chiappone A; Fantino E; Roppolo I; Lorusso M; Manfredi D; Fino P; Pirri CF; Calignano F
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5627-33. PubMed ID: 26871993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blue Laser Projection Printing of Conductive Complex 2D and 3D Metallic Structures from Photosensitive Precursors.
    Wang X; Cui K; Xuan Q; Zhu C; Zhao N; Xu J
    ACS Appl Mater Interfaces; 2019 Jun; 11(24):21668-21674. PubMed ID: 31117433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Situ Thermal Generation of Silver Nanoparticles in 3D Printed Polymeric Structures.
    Fantino E; Chiappone A; Calignano F; Fontana M; Pirri F; Roppolo I
    Materials (Basel); 2016 Jul; 9(7):. PubMed ID: 28773716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Trends in Advanced Photoinitiators for Vat Photopolymerization 3D Printing.
    Bao Y
    Macromol Rapid Commun; 2022 Jul; 43(14):e2200202. PubMed ID: 35579565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid Three-Dimensional Printing in Water Using Semiconductor-Metal Hybrid Nanoparticles as Photoinitiators.
    Pawar AA; Halivni S; Waiskopf N; Ben-Shahar Y; Soreni-Harari M; Bergbreiter S; Banin U; Magdassi S
    Nano Lett; 2017 Jul; 17(7):4497-4501. PubMed ID: 28617606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Fabrication of Micro Beam from Photopolymer by Digital Light Processing 3D Printing Technology.
    Ertugrul I
    Micromachines (Basel); 2020 May; 11(5):. PubMed ID: 32443757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Digital Light Processing 4D Printing of Transparent, Strong, Highly Conductive Hydrogels.
    He Y; Yu R; Li X; Zhang M; Zhang Y; Yang X; Zhao X; Huang W
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):36286-36294. PubMed ID: 34283559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchically Designed Electron Paths in 3D Printed Energy Storage Devices.
    Park SH; Kaur M; Yun D; Kim WS
    Langmuir; 2018 Sep; 34(37):10897-10904. PubMed ID: 30149719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactive Conductive Ink Capable of In Situ and Rapid Synthesis of Conductive Patterns Suitable for Inkjet Printing.
    Wang Y; Du D; Zhou Z; Xie H; Li J; Zhao Y
    Molecules; 2019 Sep; 24(19):. PubMed ID: 31574997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photocurable 3D-Printable Systems with Controlled Porosity towards CO
    Chiappone A; Pedico A; Porcu S; Pirri CF; Lamberti A; Roppolo I
    Polymers (Basel); 2022 Dec; 14(23):. PubMed ID: 36501659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D printing of highly conductive silver architectures enabled to sinter at low temperatures.
    Kim JH; Lee S; Wajahat M; Ahn J; Pyo J; Chang WS; Seol SK
    Nanoscale; 2019 Oct; 11(38):17682-17688. PubMed ID: 31539002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The fabrication of periodic polymer/silver nanoparticle structures: in situ reduction of silver nanoparticles from precursor spatially distributed in polymer using holographic exposure.
    Smirnova TN; Kokhtych LM; Kutsenko AS; Sakhno OV; Stumpe J
    Nanotechnology; 2009 Oct; 20(40):405301. PubMed ID: 19752504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustic Patterning for 3D Embedded Electrically Conductive Wire in Stereolithography.
    Yunus DE; Sohrabi S; He R; Shi W; Liu Y
    J Micromech Microeng; 2017 Apr; 27(4):. PubMed ID: 30344375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of Conducting Polyacrylate Resin Solution with Polyaniline Nanofiber and Graphene for Conductive 3D Printing Application.
    Han H; Cho S
    Polymers (Basel); 2018 Sep; 10(9):. PubMed ID: 30960928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanics of shape distortion of DLP 3D printed structures during UV post-curing.
    Wu D; Zhao Z; Zhang Q; Qi HJ; Fang D
    Soft Matter; 2019 Aug; 15(30):6151-6159. PubMed ID: 31317163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A New Approach to Micromachining: High-Precision and Innovative Additive Manufacturing Solutions Based on Photopolymerization Technology.
    Fiedor P; Ortyl J
    Materials (Basel); 2020 Jul; 13(13):. PubMed ID: 32630285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The selection of photoinitiators for photopolymerization of biodegradable polymers and its application in digital light processing additive manufacturing.
    Wang CC; Chen JY; Wang J
    J Biomed Mater Res A; 2022 Jan; 110(1):204-216. PubMed ID: 34397160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Digital Light Processing (DLP) 3D Printing of Atomoxetine Hydrochloride Tablets Using Photoreactive Suspensions.
    Krkobabić M; Medarević D; Pešić N; Vasiljević D; Ivković B; Ibrić S
    Pharmaceutics; 2020 Aug; 12(9):. PubMed ID: 32878260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.