BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 26992151)

  • 1. Comparison of batch and continuous multi-column protein A capture processes by optimal design.
    Baur D; Angarita M; Müller-Späth T; Steinebach F; Morbidelli M
    Biotechnol J; 2016 Jul; 11(7):920-31. PubMed ID: 26992151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal model-based design of the twin-column CaptureSMB process improves capacity utilization and productivity in protein A affinity capture.
    Baur D; Angarita M; Müller-Späth T; Morbidelli M
    Biotechnol J; 2016 Jan; 11(1):135-45. PubMed ID: 26308369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Twin-column CaptureSMB: a novel cyclic process for protein A affinity chromatography.
    Angarita M; Müller-Späth T; Baur D; Lievrouw R; Lissens G; Morbidelli M
    J Chromatogr A; 2015 Apr; 1389():85-95. PubMed ID: 25748537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model assisted comparison of Protein A resins and multi-column chromatography for capture processes.
    Baur D; Angelo JM; Chollangi S; Xu X; Müller-Späth T; Zhang N; Ghose S; Li ZJ; Morbidelli M
    J Biotechnol; 2018 Nov; 285():64-73. PubMed ID: 30165118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving affinity chromatography resin efficiency using semi-continuous chromatography.
    Mahajan E; George A; Wolk B
    J Chromatogr A; 2012 Mar; 1227():154-62. PubMed ID: 22265178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A straightforward methodology for designing continuous monoclonal antibody capture multi-column chromatography processes.
    Gjoka X; Rogler K; Martino RA; Gantier R; Schofield M
    J Chromatogr A; 2015 Oct; 1416():38-46. PubMed ID: 26363944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transfer of a three step mAb chromatography process from batch to continuous: Optimizing productivity to minimize consumable requirements.
    Gjoka X; Gantier R; Schofield M
    J Biotechnol; 2017 Jan; 242():11-18. PubMed ID: 27939321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous counter-current chromatography for capture and polishing steps in biopharmaceutical production.
    Steinebach F; Müller-Späth T; Morbidelli M
    Biotechnol J; 2016 Sep; 11(9):1126-41. PubMed ID: 27376629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model-based process development and evaluation of twin-column continuous capture processes with Protein A affinity resin.
    Sun YN; Shi C; Zhang QL; Yao SJ; Slater NKH; Lin DQ
    J Chromatogr A; 2020 Aug; 1625():461300. PubMed ID: 32709343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis and optimal design of batch and two-column continuous chromatographic frontal processes for monoclonal antibody purification.
    Shi C; Vogg S; Lin DQ; Sponchioni M; Morbidelli M
    Biotechnol Bioeng; 2021 Sep; 118(9):3420-3434. PubMed ID: 33755192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of multi-column chromatography configurations through model-based optimization.
    Pareek A; Buddhiraju VS; Masampally VS; Premraj K; Runkana V
    Biotechnol Prog; 2023; 39(6):e3376. PubMed ID: 37454372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Direct Approach for Process Development Using Single Column Experiments Results in Predictable Streamlined Multi-Column Chromatography Bioprocesses.
    Utturkar A; Gillette K; Sun CY; Pagkaliwangan M; Quesenberry R; Schofield M
    Biotechnol J; 2019 Apr; 14(4):. PubMed ID: 30288940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental design of a twin-column countercurrent gradient purification process.
    Steinebach F; Ulmer N; Decker L; Aumann L; Morbidelli M
    J Chromatogr A; 2017 Apr; 1492():19-26. PubMed ID: 28283246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Protein A affinity resins for twin-column continuous capture processes: Process performance and resin characteristics.
    Sun YN; Shi C; Zhang QL; Slater NKH; Jungbauer A; Yao SJ; Lin DQ
    J Chromatogr A; 2021 Sep; 1654():462454. PubMed ID: 34407469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal loading flow rate trajectory in monoclonal antibody capture chromatography.
    Gomis-Fons J; Yamanee-Nolin M; Andersson N; Nilsson B
    J Chromatogr A; 2021 Jan; 1635():461760. PubMed ID: 33271430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel framework of surrogate-based feasibility analysis for establishing design space of twin-column continuous chromatography.
    Ding C; Ierapetritou M
    Int J Pharm; 2021 Nov; 609():121161. PubMed ID: 34624445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Process development and optimization of continuous capture with three-column periodic counter-current chromatography.
    Shi C; Zhang QL; Jiao B; Chen XJ; Chen R; Gong W; Yao SJ; Lin DQ
    Biotechnol Bioeng; 2021 Sep; 118(9):3313-3322. PubMed ID: 33480439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility of using continuous chromatography in downstream processing: Comparison of costs and product quality for a hybrid process vs. a conventional batch process.
    Ötes O; Flato H; Winderl J; Hubbuch J; Capito F
    J Biotechnol; 2017 Oct; 259():213-220. PubMed ID: 28684321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linear flow-velocity gradient chromatography-An efficient method for increasing the process efficiency of batch and continuous capture chromatography of proteins.
    Chen CS; Ando K; Yoshimoto N; Yamamoto S
    Biotechnol Bioeng; 2021 Mar; 118(3):1262-1272. PubMed ID: 33283261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimized Continuous Multicolumn Chromatography Enables Increased Productivities and Cost Savings by Employing More Columns.
    Pagkaliwangan M; Hummel J; Gjoka X; Bisschops M; Schofield M
    Biotechnol J; 2019 Feb; 14(2):e1800179. PubMed ID: 30350920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.