BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 26992151)

  • 21. Model-based evaluation and model-free strategy for process development of three-column periodic counter-current chromatography.
    Sun YN; Shi C; Zhong XZ; Chen XJ; Chen R; Zhang QL; Yao SJ; Jungbauer A; Lin DQ
    J Chromatogr A; 2022 Aug; 1677():463311. PubMed ID: 35843202
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Designing affinity chromatographic processes for the capture of antibodies. Part I: A simplified approach.
    Pfister D; David L; Holzer M; Nicoud RM
    J Chromatogr A; 2017 Apr; 1494():27-39. PubMed ID: 28318569
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimising the design and operation of semi-continuous affinity chromatography for clinical and commercial manufacture.
    Pollock J; Bolton G; Coffman J; Ho SV; Bracewell DG; Farid SS
    J Chromatogr A; 2013 Apr; 1284():17-27. PubMed ID: 23453463
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Continuous multi-column capture of monoclonal antibodies with convective diffusive membrane adsorbers.
    Schmitz F; Knöchelmann E; Kruse T; Minceva M; Kampmann M
    Biotechnol Bioeng; 2024 Jun; 121(6):1859-1875. PubMed ID: 38470343
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Model based adaptive control of a continuous capture process for monoclonal antibodies production.
    Steinebach F; Angarita M; Karst DJ; Müller-Späth T; Morbidelli M
    J Chromatogr A; 2016 Apr; 1444():50-6. PubMed ID: 27046002
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Large-scale monoclonal antibody purification by continuous chromatography, from process design to scale-up.
    Girard V; Hilbold NJ; Ng CK; Pegon L; Chahim W; Rousset F; Monchois V
    J Biotechnol; 2015 Nov; 213():65-73. PubMed ID: 25962790
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Online optimization of dynamic binding capacity and productivity by model predictive control.
    Eslami T; Steinberger M; Csizmazia C; Jungbauer A; Lingg N
    J Chromatogr A; 2022 Sep; 1680():463420. PubMed ID: 36007474
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Performance of a new protein A affinity membrane for the primary recovery of antibodies.
    Boi C; Dimartino S; Sarti GC
    Biotechnol Prog; 2008; 24(3):640-7. PubMed ID: 18473438
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Maximizing binding capacity for protein A chromatography.
    Ghose S; Zhang J; Conley L; Caple R; Williams KP; Cecchini D
    Biotechnol Prog; 2014; 30(6):1335-40. PubMed ID: 25138962
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Continuous bind-and-elute protein A capture chromatography: Optimization under process scale column constraints and comparison to batch operation.
    Kaltenbrunner O; Diaz L; Hu X; Shearer M
    Biotechnol Prog; 2016 Jul; 32(4):938-48. PubMed ID: 27111828
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimization of Single-Column Batch and Multicolumn Continuous Protein A Chromatography and Performance Comparison Based on Mechanistic Model.
    Guo J; Jin M; Kanani D
    Biotechnol J; 2020 Oct; 15(10):e2000192. PubMed ID: 32663374
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimization study on periodic counter-current chromatography integrated in a monoclonal antibody downstream process.
    Gomis-Fons J; Andersson N; Nilsson B
    J Chromatogr A; 2020 Jun; 1621():461055. PubMed ID: 32276855
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design of high productivity antibody capture by protein A chromatography using an integrated experimental and modeling approach.
    Ng CK; Osuna-Sanchez H; Valéry E; Sørensen E; Bracewell DG
    J Chromatogr B Analyt Technol Biomed Life Sci; 2012 Jun; 899():116-26. PubMed ID: 22658737
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Model-based process development of continuous chromatography for antibody capture: A case study with twin-column system.
    Shi C; Gao ZY; Zhang QL; Yao SJ; Slater NKH; Lin DQ
    J Chromatogr A; 2020 May; 1619():460936. PubMed ID: 32037074
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new general method for designing affinity chromatography processes.
    Ling L; Kao LW; Wang NH
    J Chromatogr A; 2014 Aug; 1355():86-99. PubMed ID: 24997111
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Choosing the right protein A affinity chromatography media can remove aggregates efficiently.
    Yada T; Nonaka K; Yabuta M; Yoshimoto N; Yamamoto S
    Biotechnol J; 2017 Jan; 12(1):. PubMed ID: 27660109
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancing protein A productivity and resin utilization within integrated or intensified processes.
    Brinkmann A; Elouafiq S
    Biotechnol Bioeng; 2021 Sep; 118(9):3359-3366. PubMed ID: 33638385
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Continuous countercurrent tangential chromatography for mixed mode post-capture operations in monoclonal antibody purification.
    Dutta AK; Fedorenko D; Tan J; Costanzo JA; Kahn DS; Zydney AL; Shinkazh O
    J Chromatogr A; 2017 Aug; 1511():37-44. PubMed ID: 28697935
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In-line detection of monoclonal antibodies in the effluent of protein A chromatography with QCM sensor.
    Kisovec M; Anderluh G; Podobnik M; Caserman S
    Anal Biochem; 2020 Nov; 608():113899. PubMed ID: 32763307
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integrated continuous biomanufacturing platform with ATF perfusion and one column chromatography operation for optimum resin utilization and productivity.
    Kamga MH; Cattaneo M; Yoon S
    Prep Biochem Biotechnol; 2018 May; 48(5):383-390. PubMed ID: 29509101
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.