These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 26992290)

  • 21. Determination of mass and heat transfer parameters during freeze-drying cycles of pharmaceutical products.
    Hottot A; Vessot S; Andrieu J
    PDA J Pharm Sci Technol; 2005; 59(2):138-53. PubMed ID: 15971546
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermal Imaging as a Noncontact Inline Process Analytical Tool for Product Temperature Monitoring during Continuous Freeze-Drying of Unit Doses.
    Van Bockstal PJ; Corver J; De Meyer L; Vervaet C; De Beer T
    Anal Chem; 2018 Nov; 90(22):13591-13599. PubMed ID: 30339362
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of an efficient single-step freeze-drying cycle for protein formulations.
    Chang BS; Fischer NL
    Pharm Res; 1995 Jun; 12(6):831-7. PubMed ID: 7667186
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Model for heat and mass transfer in freeze-drying of pellets.
    Trelea IC; Passot S; Marin M; Fonseca F
    J Biomech Eng; 2009 Jul; 131(7):074501. PubMed ID: 19640137
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of Optical Coherence Tomography Freeze-Drying Microscopy for Designing Lyophilization Process and Its Impact on Process Efficiency and Product Quality.
    Korang-Yeboah M; Srinivasan C; Siddiqui A; Awotwe-Otoo D; Cruz CN; Muhammad A
    AAPS PharmSciTech; 2018 Jan; 19(1):448-459. PubMed ID: 28785859
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Establishing a Multi-Vial Design Space for the Freeze-Drying Process by Means of Mathematical Modeling of the Primary Drying Stage.
    Pérez R; Alvarez MA; Acosta LL; Terry AM; Labrada A
    J Pharm Sci; 2024 Jun; 113(6):1506-1514. PubMed ID: 38342340
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of Ice Morphology on Design Space of Pharmaceutical Freeze-Drying.
    Goshima H; Do G; Nakagawa K
    J Pharm Sci; 2016 Jun; 105(6):1920-1933. PubMed ID: 27238489
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lyophilization cycle development for a high-concentration monoclonal antibody formulation lacking a crystalline bulking agent.
    Colandene JD; Maldonado LM; Creagh AT; Vrettos JS; Goad KG; Spitznagel TM
    J Pharm Sci; 2007 Jun; 96(6):1598-608. PubMed ID: 17117409
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Correlation of laboratory and production freeze drying cycles.
    Kuu WY; Hardwick LM; Akers MJ
    Int J Pharm; 2005 Sep; 302(1-2):56-67. PubMed ID: 16099610
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein purification process engineering. Freeze drying: A practical overview.
    Gatlin LA; Nail SL
    Bioprocess Technol; 1994; 18():317-67. PubMed ID: 7764173
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Freeze-Drying of L-Arginine/Sucrose-Based Protein Formulations, Part 2: Optimization of Formulation Design and Freeze-Drying Process Conditions for an L-Arginine Chloride-Based Protein Formulation System.
    Stärtzel P; Gieseler H; Gieseler M; Abdul-Fattah AM; Adler M; Mahler HC; Goldbach P
    J Pharm Sci; 2015 Dec; 104(12):4241-4256. PubMed ID: 26422647
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A model-based optimization strategy to achieve fast and robust freeze-drying cycles.
    Vanbillemont B; Greiner AL; Ehrl V; Menzen T; Friess W; Hawe A
    Int J Pharm X; 2023 Dec; 5():100180. PubMed ID: 37125084
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Freeze-drying simulation framework coupling product attributes and equipment capability: toward accelerating process by equipment modifications.
    Ganguly A; Alexeenko AA; Schultz SG; Kim SG
    Eur J Pharm Biopharm; 2013 Oct; 85(2):223-35. PubMed ID: 23748132
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A step forward towards the development of stable freeze-dried liposomes: a quality by design approach (QbD).
    Sylvester B; Porfire A; Achim M; Rus L; Tomuţă I
    Drug Dev Ind Pharm; 2018 Mar; 44(3):385-397. PubMed ID: 29098869
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quality by design: scale-up of freeze-drying cycles in pharmaceutical industry.
    Pisano R; Fissore D; Barresi AA; Rastelli M
    AAPS PharmSciTech; 2013 Sep; 14(3):1137-49. PubMed ID: 23884856
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental and stochastic analysis of lyophilisation.
    Ravnik J; Ramšak M; Zadravec M; Kamenik B; Hriberšek M
    Eur J Pharm Biopharm; 2021 Feb; 159():108-122. PubMed ID: 33385510
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dual chamber cartridges in a continuous pharmaceutical freeze-drying concept: Determination of the optimal dynamic infrared heater temperature during primary drying.
    De Meyer L; Lammens J; Vanbillemont B; Van Bockstal PJ; Corver J; Vervaet C; Friess W; De Beer T
    Int J Pharm; 2019 Oct; 570():118631. PubMed ID: 31442499
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the Design of a Fuzzy Logic-Based Control System for Freeze-Drying Processes.
    Fissore D
    J Pharm Sci; 2016 Dec; 105(12):3562-3572. PubMed ID: 27692619
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Use of manometric temperature measurements (MTM) to characterize the freeze-drying behavior of amorphous protein formulations.
    Johnson RE; Oldroyd ME; Ahmed SS; Gieseler H; Lewis LM
    J Pharm Sci; 2010 Jun; 99(6):2863-73. PubMed ID: 19960528
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Freeze drying of nanosuspensions, 2: the role of the critical formulation temperature on stability of drug nanosuspensions and its practical implication on process design.
    Beirowski J; Inghelbrecht S; Arien A; Gieseler H
    J Pharm Sci; 2011 Oct; 100(10):4471-81. PubMed ID: 21607957
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.