These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 26992325)

  • 1. Functional cellular analyses reveal energy metabolism defect and mitochondrial DNA depletion in a case of mitochondrial aconitase deficiency.
    Sadat R; Barca E; Masand R; Donti TR; Naini A; De Vivo DC; DiMauro S; Hanchard NA; Graham BH
    Mol Genet Metab; 2016 May; 118(1):28-34. PubMed ID: 26992325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical, radiological, and genetic characteristics of 16 patients with ACO2 gene defects: Delineation of an emerging neurometabolic syndrome.
    Sharkia R; Wierenga KJ; Kessel A; Azem A; Bertini E; Carrozzo R; Torraco A; Goffrini P; Ceccatelli Berti C; McCormick ME; Plecko B; Klein A; Abela L; Hengel H; Schöls L; Shalev S; Khayat M; Mahajnah M; Spiegel R
    J Inherit Metab Dis; 2019 Mar; 42(2):264-275. PubMed ID: 30689204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of novel compound heterozygous mutations in ACO2 in a patient with progressive cerebral and cerebellar atrophy.
    Fukada M; Yamada K; Eda S; Inoue K; Ohba C; Matsumoto N; Saitsu H; Nakayama A
    Mol Genet Genomic Med; 2019 Jul; 7(7):e00698. PubMed ID: 31106992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutations in the tricarboxylic acid cycle enzyme, aconitase 2, cause either isolated or syndromic optic neuropathy with encephalopathy and cerebellar atrophy.
    Metodiev MD; Gerber S; Hubert L; Delahodde A; Chretien D; Gérard X; Amati-Bonneau P; Giacomotto MC; Boddaert N; Kaminska A; Desguerre I; Amiel J; Rio M; Kaplan J; Munnich A; Rötig A; Rozet JM; Besmond C
    J Med Genet; 2014 Dec; 51(12):834-8. PubMed ID: 25351951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel compound heterozygous ACO2 mutations in an infant with progressive encephalopathy: A newly identified neurometabolic syndrome.
    Park JS; Kim MJ; Kim SY; Lim BC; Kim KJ; Seong MW; Lee JS; Chae JH
    Brain Dev; 2020 Oct; 42(9):680-685. PubMed ID: 32713659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Infantile cerebellar-retinal degeneration associated with a mutation in mitochondrial aconitase, ACO2.
    Spiegel R; Pines O; Ta-Shma A; Burak E; Shaag A; Halvardson J; Edvardson S; Mahajna M; Zenvirt S; Saada A; Shalev S; Feuk L; Elpeleg O
    Am J Hum Genet; 2012 Mar; 90(3):518-23. PubMed ID: 22405087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recessive ACO2 variants as a cause of isolated ophthalmologic phenotypes.
    Gibson S; Azamian MS; Lalani SR; Yen KG; Sutton VR; Scott DA
    Am J Med Genet A; 2020 Aug; 182(8):1960-1966. PubMed ID: 32449285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasma metabolomics reveals a diagnostic metabolic fingerprint for mitochondrial aconitase (ACO2) deficiency.
    Abela L; Spiegel R; Crowther LM; Klein A; Steindl K; Papuc SM; Joset P; Zehavi Y; Rauch A; Plecko B; Simmons TL
    PLoS One; 2017; 12(5):e0176363. PubMed ID: 28463998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Haploinsufficiency due to a novel ACO2 deletion causes mitochondrial dysfunction in fibroblasts from a patient with dominant optic nerve atrophy.
    Neumann MA; Grossmann D; Schimpf-Linzenbold S; Dayan D; Stingl K; Ben-Menachem R; Pines O; Massart F; Delcambre S; Ghelfi J; Bohler J; Strom T; Kessel A; Azem A; Schöls L; Grünewald A; Wissinger B; Krüger R
    Sci Rep; 2020 Oct; 10(1):16736. PubMed ID: 33028849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of mitochondrial aconitase promotes colorectal cancer progression via SCD1-mediated lipid remodeling.
    You X; Tian J; Zhang H; Guo Y; Yang J; Zhu C; Song M; Wang P; Liu Z; Cancilla J; Lu W; Glorieux C; Wen S; Du H; Huang P; Hu Y
    Mol Metab; 2021 Jun; 48():101203. PubMed ID: 33676027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Child Neurology: Progressive Cerebellar Atrophy and Retinal Dystrophy: Clues to an Ultrarare
    Lail N; Pandey AK; Venkatesh S; Noland RD; Swanson G; Pain D; Branson HM; Suzuki CK; Yoon G
    Neurology; 2023 Oct; 101(15):e1567-e1571. PubMed ID: 37460232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical characterization on muscle tissue of a novel biallelic
    Ricci FS; Stanga S; Mezzanotte M; Marinaccio C; D'Alessandro R; Somà A; Sottemano S; Conio A; Morana G; Spada M; Boido M; Mongini TE
    JIMD Rep; 2024 Jan; 65(1):3-9. PubMed ID: 38186851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expanding the clinical and phenotypic heterogeneity associated with biallelic variants in ACO2.
    Blackburn PR; Schultz MJ; Lahner CA; Li D; Bhoj E; Fisher LJ; Renaud DL; Kenney A; Ibrahim N; Hashem M; Zain Seidahmed M; Hasadsri L; Schrier Vergano SA; Alkuraya FS; Lanpher BC
    Ann Clin Transl Neurol; 2020 Jun; 7(6):1013-1028. PubMed ID: 32519519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the human mitochondrial aconitase gene (ACO2).
    Mirel DB; Marder K; Graziano J; Freyer G; Zhao Q; Mayeux R; Wilhelmsen KC
    Gene; 1998 Jun; 213(1-2):205-18. PubMed ID: 9630632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial aconitase controls adipogenesis through mediation of cellular ATP production.
    Chen Y; Cai GH; Xia B; Wang X; Zhang CC; Xie BC; Shi XC; Liu H; Lu JF; Zhang RX; Zhu MQ; Liu M; Yang SZ; Yang Zhang D; Chu XY; Khan R; Wang YL; Wu JW
    FASEB J; 2020 May; 34(5):6688-6702. PubMed ID: 32212192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial Aconitase and Its Contribution to the Pathogenesis of Neurodegenerative Diseases.
    Padalko V; Posnik F; Adamczyk M
    Int J Mol Sci; 2024 Sep; 25(18):. PubMed ID: 39337438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased Survival and Partly Preserved Cognition in a Patient With ACO2-Related Disease Secondary to a Novel Variant.
    Srivastava S; Gubbels CS; Dies K; Fulton A; Yu T; Sahin M
    J Child Neurol; 2017 Aug; 32(9):840-845. PubMed ID: 28545339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expanding the phenotypic spectrum of Succinyl-CoA ligase deficiency through functional validation of a new SUCLG1 variant.
    Donti TR; Masand R; Scott DA; Craigen WJ; Graham BH
    Mol Genet Metab; 2016 Sep; 119(1-2):68-74. PubMed ID: 27484306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-Mitochondrial Aconitase-2 Mediates the Transcription of Nuclear-Encoded Electron Transport Chain Genes in Fission Yeast.
    Kim HJ; Cho SY; Jung SJ; Cho YJ; Roe JH; Kim KD
    J Microbiol; 2024 Aug; 62(8):639-648. PubMed ID: 38916790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aconitase 2 inhibits the proliferation of MCF-7 cells promoting mitochondrial oxidative metabolism and ROS/FoxO1-mediated autophagic response.
    Ciccarone F; Di Leo L; Lazzarino G; Maulucci G; Di Giacinto F; Tavazzi B; Ciriolo MR
    Br J Cancer; 2020 Jan; 122(2):182-193. PubMed ID: 31819175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.