These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 26992511)
21. Silver overlayer-modified surface-enhanced Raman scattering-active gold substrates for potential applications in trace detection of biochemical species. Ou KL; Hsu TC; Liu YC; Yang KH; Tsai HY Anal Chim Acta; 2014 Jan; 806():188-96. PubMed ID: 24331055 [TBL] [Abstract][Full Text] [Related]
22. Highly soluble PEGylated pyrene-gold nanoparticles dyads for sensitive turn-on fluorescent detection of biothiols. Xu JP; Jia L; Fang Y; Lv LP; Song ZG; Ji J Analyst; 2010 Sep; 135(9):2323-7. PubMed ID: 20603668 [TBL] [Abstract][Full Text] [Related]
23. Amphiphilic Functionalized Acupuncture Needle as SERS Sensor for In Situ Multiphase Detection. Zhou B; Mao M; Cao X; Ge M; Tang X; Li S; Lin D; Yang L; Liu J Anal Chem; 2018 Mar; 90(6):3826-3832. PubMed ID: 29457458 [TBL] [Abstract][Full Text] [Related]
24. Assembling PVP-Au NPs as portable chip for sensitive detection of cyanide with surface-enhanced Raman spectroscopy. Li P; Li P; Tan X; Wang J; Zhang Y; Han H; Yang L Anal Bioanal Chem; 2020 May; 412(12):2863-2871. PubMed ID: 32112131 [TBL] [Abstract][Full Text] [Related]
25. Carbon nanodots as ligand exchange probes in Au@C-dot nanobeacons for fluorescent turn-on detection of biothiols. Mandani S; Sharma B; Dey D; Sarma TK Nanoscale; 2015 Feb; 7(5):1802-8. PubMed ID: 25520240 [TBL] [Abstract][Full Text] [Related]
26. Influence of dopamine concentration and surface coverage of Au shell on the optical properties of Au, Ag, and Ag(core)Au(shell) nanoparticles. Bu Y; Lee S ACS Appl Mater Interfaces; 2012 Aug; 4(8):3923-31. PubMed ID: 22833686 [TBL] [Abstract][Full Text] [Related]
27. Cetyltrimethylammonium bromide-modified spherical and cube-like gold nanoparticles as extrinsic Raman labels in surface-enhanced Raman spectroscopy based heterogeneous immunoassays. Narayanan R; Lipert RJ; Porter MD Anal Chem; 2008 Mar; 80(6):2265-71. PubMed ID: 18290676 [TBL] [Abstract][Full Text] [Related]
28. Facile in Situ Synthesis of Silver Nanoparticles on the Surface of Metal-Organic Framework for Ultrasensitive Surface-Enhanced Raman Scattering Detection of Dopamine. Jiang Z; Gao P; Yang L; Huang C; Li Y Anal Chem; 2015 Dec; 87(24):12177-82. PubMed ID: 26575213 [TBL] [Abstract][Full Text] [Related]
29. Surface-enhanced Raman scattering based detection of bacterial biomarker and potential surface reaction species. Cheng HW; Luo WQ; Wen GL; Huan SY; Shen GL; Yu RQ Analyst; 2010 Nov; 135(11):2993-3001. PubMed ID: 20877832 [TBL] [Abstract][Full Text] [Related]
30. Hybrid single nanoreactor for in situ SERS monitoring of plasmon-driven and small Au nanoparticles catalyzed reactions. Li P; Ma B; Yang L; Liu J Chem Commun (Camb); 2015 Jul; 51(57):11394-7. PubMed ID: 26087227 [TBL] [Abstract][Full Text] [Related]
31. Differential SERS activity of gold and silver nanostructures enabled by adsorbed poly(vinylpyrrolidone). Pinkhasova P; Yang L; Zhang Y; Sukhishvili S; Du H Langmuir; 2012 Feb; 28(5):2529-35. PubMed ID: 22225536 [TBL] [Abstract][Full Text] [Related]
32. Synthesized Au NPs@silica composite as surface-enhanced Raman spectroscopy (SERS) substrate for fast sensing trace contaminant in milk. Xu Y; Kutsanedzie FYH; Hassan MM; Li H; Chen Q Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jan; 206():405-412. PubMed ID: 30170175 [TBL] [Abstract][Full Text] [Related]
33. Clean substrates prepared by chemical adsorption of iodide followed by electrochemical oxidation for surface-enhanced Raman spectroscopic study of cell membrane. Li MD; Cui Y; Gao MX; Luo J; Ren B; Tian ZQ Anal Chem; 2008 Jul; 80(13):5118-25. PubMed ID: 18489182 [TBL] [Abstract][Full Text] [Related]
34. Adsorption and detection of sport doping drugs on metallic plasmonic nanoparticles of different morphology. Izquierdo-Lorenzo I; Alda I; Sanchez-Cortes S; Garcia-Ramos JV Langmuir; 2012 Jun; 28(24):8891-901. PubMed ID: 22369236 [TBL] [Abstract][Full Text] [Related]
35. A "turn-off" SERS assay of heparin with high selectivity based on heparin-peptide complex and Raman labelled gold nanoparticles. Qu G; Zhang G; Wu Z; Shen A; Wang J; Hu J Biosens Bioelectron; 2014 Oct; 60():124-9. PubMed ID: 24793094 [TBL] [Abstract][Full Text] [Related]
36. Gold nanoparticles with tipped surface structures as substrates for single-particle surface-enhanced Raman spectroscopy: concave nanocubes, nanotrisoctahedra, and nanostars. Zhang Q; Large N; Wang H ACS Appl Mater Interfaces; 2014 Oct; 6(19):17255-67. PubMed ID: 25222940 [TBL] [Abstract][Full Text] [Related]
37. Surface-enhanced Raman scattering study of the redox adsorption of p-phenylenediamine on gold or copper surfaces. de Carvalho DF; da Fonseca BG; Barbosa IL; Landi SM; de Sena LÁ; Archanjo BS; Sant'Ana AC Spectrochim Acta A Mol Biomol Spectrosc; 2013 Feb; 103():108-13. PubMed ID: 23257336 [TBL] [Abstract][Full Text] [Related]
38. Meditating metal coenhanced fluorescence and SERS around gold nanoaggregates in nanosphere as bifunctional biosensor for multiple DNA targets. Liu Y; Wu P ACS Appl Mater Interfaces; 2013 Jun; 5(12):5832-44. PubMed ID: 23734937 [TBL] [Abstract][Full Text] [Related]
39. Label-free SERS monitoring of chemical reactions catalyzed by small gold nanoparticles using 3D plasmonic superstructures. Xie W; Walkenfort B; Schlücker S J Am Chem Soc; 2013 Feb; 135(5):1657-60. PubMed ID: 23186150 [TBL] [Abstract][Full Text] [Related]
40. Enhancing Nonfouling and Sensitivity of Surface-Enhanced Raman Scattering Substrates for Potent Drug Analysis in Blood Plasma via Fabrication of a Flexible Plasmonic Patch. Masterson AN; Hati S; Ren G; Liyanage T; Manicke NE; Goodpaster JV; Sardar R Anal Chem; 2021 Feb; 93(4):2578-2588. PubMed ID: 33432809 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]