These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
347 related articles for article (PubMed ID: 26992568)
1. Adapting machine learning techniques to censored time-to-event health record data: A general-purpose approach using inverse probability of censoring weighting. Vock DM; Wolfson J; Bandyopadhyay S; Adomavicius G; Johnson PE; Vazquez-Benitez G; O'Connor PJ J Biomed Inform; 2016 Jun; 61():119-31. PubMed ID: 26992568 [TBL] [Abstract][Full Text] [Related]
2. Impact of censoring on learning Bayesian networks in survival modelling. Stajduhar I; Dalbelo-Basić B; Bogunović N Artif Intell Med; 2009 Nov; 47(3):199-217. PubMed ID: 19833488 [TBL] [Abstract][Full Text] [Related]
3. Survival stacking with multiple data types using pseudo-observation-based-AUC loss. Ginestet PG; Gabriel EE; Sachs MC J Biopharm Stat; 2022 Nov; 32(6):858-870. PubMed ID: 35574690 [TBL] [Abstract][Full Text] [Related]
4. A Naive Bayes machine learning approach to risk prediction using censored, time-to-event data. Wolfson J; Bandyopadhyay S; Elidrisi M; Vazquez-Benitez G; Vock DM; Musgrove D; Adomavicius G; Johnson PE; O'Connor PJ Stat Med; 2015 Sep; 34(21):2941-57. PubMed ID: 25980520 [TBL] [Abstract][Full Text] [Related]
5. Learning Bayesian networks from survival data using weighting censored instances. Stajduhar I; Dalbelo-Basić B J Biomed Inform; 2010 Aug; 43(4):613-22. PubMed ID: 20332035 [TBL] [Abstract][Full Text] [Related]
6. Correcting for dependent censoring in routine outcome monitoring data by applying the inverse probability censoring weighted estimator. Willems S; Schat A; van Noorden MS; Fiocco M Stat Methods Med Res; 2018 Feb; 27(2):323-335. PubMed ID: 26988930 [TBL] [Abstract][Full Text] [Related]
7. A matching-based machine learning approach to estimating optimal dynamic treatment regimes with time-to-event outcomes. Wang X; Lee H; Haaland B; Kerrigan K; Puri S; Akerley W; Shen J Stat Methods Med Res; 2024 May; 33(5):794-806. PubMed ID: 38502008 [TBL] [Abstract][Full Text] [Related]
8. Machine learning for survival analysis: a case study on recurrence of prostate cancer. Zupan B; Demsar J; Kattan MW; Beck JR; Bratko I Artif Intell Med; 2000 Aug; 20(1):59-75. PubMed ID: 11185421 [TBL] [Abstract][Full Text] [Related]
9. Two-stage estimation to adjust for treatment switching in randomised trials: a simulation study investigating the use of inverse probability weighting instead of re-censoring. Latimer NR; Abrams KR; Siebert U BMC Med Res Methodol; 2019 Mar; 19(1):69. PubMed ID: 30935369 [TBL] [Abstract][Full Text] [Related]
10. A machine learning-based framework to identify type 2 diabetes through electronic health records. Zheng T; Xie W; Xu L; He X; Zhang Y; You M; Yang G; Chen Y Int J Med Inform; 2017 Jan; 97():120-127. PubMed ID: 27919371 [TBL] [Abstract][Full Text] [Related]
11. Predictive modeling of structured electronic health records for adverse drug event detection. Zhao J; Henriksson A; Asker L; Boström H BMC Med Inform Decis Mak; 2015; 15 Suppl 4(Suppl 4):S1. PubMed ID: 26606038 [TBL] [Abstract][Full Text] [Related]
12. Prediction of In-hospital Mortality in Emergency Department Patients With Sepsis: A Local Big Data-Driven, Machine Learning Approach. Taylor RA; Pare JR; Venkatesh AK; Mowafi H; Melnick ER; Fleischman W; Hall MK Acad Emerg Med; 2016 Mar; 23(3):269-78. PubMed ID: 26679719 [TBL] [Abstract][Full Text] [Related]
13. Deep learning for survival outcomes. Steingrimsson JA; Morrison S Stat Med; 2020 Jul; 39(17):2339-2349. PubMed ID: 32281672 [TBL] [Abstract][Full Text] [Related]
14. Consistency of variety of machine learning and statistical models in predicting clinical risks of individual patients: longitudinal cohort study using cardiovascular disease as exemplar. Li Y; Sperrin M; Ashcroft DM; van Staa TP BMJ; 2020 Nov; 371():m3919. PubMed ID: 33148619 [TBL] [Abstract][Full Text] [Related]
15. Support Vector Hazards Machine: A Counting Process Framework for Learning Risk Scores for Censored Outcomes. Wang Y; Chen T; Zeng D J Mach Learn Res; 2016; 17():. PubMed ID: 28066157 [TBL] [Abstract][Full Text] [Related]
16. Classifying injury narratives of large administrative databases for surveillance-A practical approach combining machine learning ensembles and human review. Marucci-Wellman HR; Corns HL; Lehto MR Accid Anal Prev; 2017 Jan; 98():359-371. PubMed ID: 27863339 [TBL] [Abstract][Full Text] [Related]
17. Win-loss parameters for right-censored event data, with application to recurrent events. Parner ET; Overgaard M Stat Med; 2023 Dec; 42(30):5723-5735. PubMed ID: 37897052 [TBL] [Abstract][Full Text] [Related]
18. Regression with a right-censored predictor using inverse probability weighting methods. Matsouaka RA; Atem FD Stat Med; 2020 Nov; 39(27):4001-4015. PubMed ID: 32779274 [TBL] [Abstract][Full Text] [Related]
19. PREDICTIVE MODELING OF HOSPITAL READMISSION RATES USING ELECTRONIC MEDICAL RECORD-WIDE MACHINE LEARNING: A CASE-STUDY USING MOUNT SINAI HEART FAILURE COHORT. Shameer K; Johnson KW; Yahi A; Miotto R; Li LI; Ricks D; Jebakaran J; Kovatch P; Sengupta PP; Gelijns S; Moskovitz A; Darrow B; David DL; Kasarskis A; Tatonetti NP; Pinney S; Dudley JT Pac Symp Biocomput; 2017; 22():276-287. PubMed ID: 27896982 [TBL] [Abstract][Full Text] [Related]