These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
418 related articles for article (PubMed ID: 26992779)
1. Systems biology of lens development: A paradigm for disease gene discovery in the eye. Anand D; Lachke SA Exp Eye Res; 2017 Mar; 156():22-33. PubMed ID: 26992779 [TBL] [Abstract][Full Text] [Related]
2. Molecular characterization of mouse lens epithelial cell lines and their suitability to study RNA granules and cataract associated genes. Terrell AM; Anand D; Smith SF; Dang CA; Waters SM; Pathania M; Beebe DC; Lachke SA Exp Eye Res; 2015 Feb; 131():42-55. PubMed ID: 25530357 [TBL] [Abstract][Full Text] [Related]
3. iSyTE 2.0: a database for expression-based gene discovery in the eye. Kakrana A; Yang A; Anand D; Djordjevic D; Ramachandruni D; Singh A; Huang H; Ho JWK; Lachke SA Nucleic Acids Res; 2018 Jan; 46(D1):D875-D885. PubMed ID: 29036527 [TBL] [Abstract][Full Text] [Related]
4. Compound mouse mutants of bZIP transcription factors Mafg and Mafk reveal a regulatory network of non-crystallin genes associated with cataract. Agrawal SA; Anand D; Siddam AD; Kakrana A; Dash S; Scheiblin DA; Dang CA; Terrell AM; Waters SM; Singh A; Motohashi H; Yamamoto M; Lachke SA Hum Genet; 2015 Jul; 134(7):717-35. PubMed ID: 25896808 [TBL] [Abstract][Full Text] [Related]
5. RNA sequencing-based transcriptomic profiles of embryonic lens development for cataract gene discovery. Anand D; Kakrana A; Siddam AD; Huang H; Saadi I; Lachke SA Hum Genet; 2018 Dec; 137(11-12):941-954. PubMed ID: 30417254 [TBL] [Abstract][Full Text] [Related]
6. Molecular characterization of the human lens epithelium-derived cell line SRA01/04. Weatherbee BAT; Barton JR; Siddam AD; Anand D; Lachke SA Exp Eye Res; 2019 Nov; 188():107787. PubMed ID: 31479653 [TBL] [Abstract][Full Text] [Related]
7. MS/MS in silico subtraction-based proteomic profiling as an approach to facilitate disease gene discovery: application to lens development and cataract. Aryal S; Anand D; Hernandez FG; Weatherbee BAT; Huang H; Reddy AP; Wilmarth PA; David LL; Lachke SA Hum Genet; 2020 Feb; 139(2):151-184. PubMed ID: 31797049 [TBL] [Abstract][Full Text] [Related]
8. iSyTE: integrated Systems Tool for Eye gene discovery. Lachke SA; Ho JW; Kryukov GV; O'Connell DJ; Aboukhalil A; Bulyk ML; Park PJ; Maas RL Invest Ophthalmol Vis Sci; 2012 Mar; 53(3):1617-27. PubMed ID: 22323457 [TBL] [Abstract][Full Text] [Related]
9. Profiling of chromatin accessibility and identification of general cis-regulatory mechanisms that control two ocular lens differentiation pathways. Zhao Y; Zheng D; Cvekl A Epigenetics Chromatin; 2019 May; 12(1):27. PubMed ID: 31053165 [TBL] [Abstract][Full Text] [Related]
10. RNA-binding proteins and post-transcriptional regulation in lens biology and cataract: Mediating spatiotemporal expression of key factors that control the cell cycle, transcription, cytoskeleton and transparency. Lachke SA Exp Eye Res; 2022 Jan; 214():108889. PubMed ID: 34906599 [TBL] [Abstract][Full Text] [Related]
11. Genome-Wide Analysis of Differentially Expressed miRNAs and Their Associated Regulatory Networks in Lenses Deficient for the Congenital Cataract-Linked Tudor Domain Containing Protein TDRD7. Anand D; Al Saai S; Shrestha SK; Barnum CE; Chuma S; Lachke SA Front Cell Dev Biol; 2021; 9():615761. PubMed ID: 33665188 [TBL] [Abstract][Full Text] [Related]
12. Regulation of gene expression by Pax6 in ocular cells: a case of tissue-preferred expression of crystallins in lens. Cvekl A; Yang Y; Chauhan BK; Cveklova K Int J Dev Biol; 2004; 48(8-9):829-44. PubMed ID: 15558475 [TBL] [Abstract][Full Text] [Related]
13. An integrative approach to analyze microarray datasets for prioritization of genes relevant to lens biology and disease. Anand D; Agrawal S; Siddam A; Motohashi H; Yamamoto M; Lachke SA Genom Data; 2015 Aug; 5():223-227. PubMed ID: 26185746 [TBL] [Abstract][Full Text] [Related]
14. Congenital hereditary cataracts. Graw J Int J Dev Biol; 2004; 48(8-9):1031-44. PubMed ID: 15558493 [TBL] [Abstract][Full Text] [Related]
15. The cataract-linked RNA-binding protein Celf1 post-transcriptionally controls the spatiotemporal expression of the key homeodomain transcription factors Pax6 and Prox1 in lens development. Aryal S; Viet J; Weatherbee BAT; Siddam AD; Hernandez FG; Gautier-Courteille C; Paillard L; Lachke SA Hum Genet; 2020 Dec; 139(12):1541-1554. PubMed ID: 32594240 [TBL] [Abstract][Full Text] [Related]
16. A zebrafish model of foxe3 deficiency demonstrates lens and eye defects with dysregulation of key genes involved in cataract formation in humans. Krall M; Htun S; Anand D; Hart D; Lachke SA; Slavotinek AM Hum Genet; 2018 Apr; 137(4):315-328. PubMed ID: 29713869 [TBL] [Abstract][Full Text] [Related]
17. Identification of vimentin as a novel target of HSF4 in lens development and cataract by proteomic analysis. Mou L; Xu JY; Li W; Lei X; Wu Y; Xu G; Kong X; Xu GT Invest Ophthalmol Vis Sci; 2010 Jan; 51(1):396-404. PubMed ID: 19628735 [TBL] [Abstract][Full Text] [Related]
18. Chromatin features, RNA polymerase II and the comparative expression of lens genes encoding crystallins, transcription factors, and autophagy mediators. Sun J; Rockowitz S; Chauss D; Wang P; Kantorow M; Zheng D; Cvekl A Mol Vis; 2015; 21():955-73. PubMed ID: 26330747 [TBL] [Abstract][Full Text] [Related]
19. Mutation update of transcription factor genes FOXE3, HSF4, MAF, and PITX3 causing cataracts and other developmental ocular defects. Anand D; Agrawal SA; Slavotinek A; Lachke SA Hum Mutat; 2018 Apr; 39(4):471-494. PubMed ID: 29314435 [TBL] [Abstract][Full Text] [Related]
20. The Gene Regulatory Network of Lens Induction Is Wired through Meis-Dependent Shadow Enhancers of Pax6. Antosova B; Smolikova J; Klimova L; Lachova J; Bendova M; Kozmikova I; Machon O; Kozmik Z PLoS Genet; 2016 Dec; 12(12):e1006441. PubMed ID: 27918583 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]