These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 26992792)

  • 1. Modifying the endogenous electron fluxes of Rhodobacter sphaeroides 2.4.1 for improved electricity generation.
    Wong MT; Cheng D; Wang R; Hsing IM
    Enzyme Microb Technol; 2016 May; 86():45-51. PubMed ID: 26992792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light energy to bioelectricity: photosynthetic microbial fuel cells.
    Rosenbaum M; He Z; Angenent LT
    Curr Opin Biotechnol; 2010 Jun; 21(3):259-64. PubMed ID: 20378333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New insights in photosynthetic microbial fuel cell using anoxygenic phototrophic bacteria.
    Qi X; Ren Y; Liang P; Wang X
    Bioresour Technol; 2018 Jun; 258():310-317. PubMed ID: 29571891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ubiquinone reduction in the photosynthetic reaction centre of Rhodobacter sphaeroides: interplay between electron transfer, proton binding and flips of the quinone ring.
    Mulkidjanian AY; Kozlova MA; Cherepanov DA
    Biochem Soc Trans; 2005 Aug; 33(Pt 4):845-50. PubMed ID: 16042612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon fiber enhanced bioelectricity generation in soil microbial fuel cells.
    Li X; Wang X; Zhao Q; Wan L; Li Y; Zhou Q
    Biosens Bioelectron; 2016 Nov; 85():135-141. PubMed ID: 27162144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a solar-powered microbial fuel cell.
    Cho YK; Donohue TJ; Tejedor I; Anderson MA; McMahon KD; Noguera DR
    J Appl Microbiol; 2008 Mar; 104(3):640-50. PubMed ID: 17927750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photosynthetic apparatus of Rhodobacter sphaeroides exhibits prolonged charge storage.
    Ravi SK; Rawding P; Elshahawy AM; Huang K; Sun W; Zhao F; Wang J; Jones MR; Tan SC
    Nat Commun; 2019 Feb; 10(1):902. PubMed ID: 30796237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Whole-genome sequence of purple non-sulfur bacteria, Rhodobacter sphaeroides strain MBTLJ-8 with improved CO
    Park JY; Kim BN; Kim YH; Min J
    J Biotechnol; 2018 Dec; 288():9-14. PubMed ID: 30359676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The unusually strong hydrogen bond between the carbonyl of Q(A) and His M219 in the Rhodobacter sphaeroides reaction center is not essential for efficient electron transfer from Q(A)(-) to Q(B).
    Breton J; Lavergne J; Wakeham MC; Nabedryk E; Jones MR
    Biochemistry; 2007 Jun; 46(22):6468-76. PubMed ID: 17497939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of light on the production of bioelectricity and added-value microalgae biomass in a Photosynthetic Alga Microbial Fuel Cell.
    Gouveia L; Neves C; Sebastião D; Nobre BP; Matos CT
    Bioresour Technol; 2014 Feb; 154():171-7. PubMed ID: 24388957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tackling codon usage bias for heterologous expression in Rhodobacter sphaeroides by supplementation of rare tRNAs.
    Cheng D; Wang R; Prather KJ; Chow KL; Hsing IM
    Enzyme Microb Technol; 2015 May; 72():25-34. PubMed ID: 25837504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Cloning and identification of the gene controlling nitrogen metabolism in the photosynthetic purple bacteria Rhodobacter sphaeroides].
    Glazer VM; Tevzadze GG; Babykin MM; Smirnova VA; Zinchenko VV; Shestakov SV
    Mol Gen Mikrobiol Virusol; 1994; (5):17-21. PubMed ID: 7891728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light-dependent regulation of photosynthesis genes in Rhodobacter sphaeroides 2.4.1 is coordinately controlled by photosynthetic electron transport via the PrrBA two-component system and the photoreceptor AppA.
    Happ HN; Braatsch S; Broschek V; Osterloh L; Klug G
    Mol Microbiol; 2005 Nov; 58(3):903-14. PubMed ID: 16238636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced oxytetracycline removal coupling with increased power generation using a self-sustained photo-bioelectrochemical fuel cell.
    Sun J; Xu W; Yang P; Li N; Yuan Y; Zhang H; Wang Y; Ning X; Zhang Y; Chang K; Peng Y; Chen K
    Chemosphere; 2019 Apr; 221():21-29. PubMed ID: 30634145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electricity from methanol using indigenous methylotrophs from hydraulic fracturing flowback water.
    Jawaharraj K; Shrestha N; Chilkoor G; Vemuri B; Gadhamshetty V
    Bioelectrochemistry; 2020 Oct; 135():107549. PubMed ID: 32446152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ electrooxidation of photobiological hydrogen in a photobioelectrochemical fuel cell based on Rhodobacter sphaeroides.
    Rosenbaum M; Schröder U; Scholz F
    Environ Sci Technol; 2005 Aug; 39(16):6328-33. PubMed ID: 16173600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactions of isocytochrome c2 in the photosynthetic electron transfer chain of Rhodobacter sphaeroides.
    Witthuhn VC; Gao J; Hong S; Halls S; Rott MA; Wraight CA; Crofts AR; Donohue TJ
    Biochemistry; 1997 Jan; 36(4):903-11. PubMed ID: 9020790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electricity generation from glucose by a Klebsiella sp. in microbial fuel cells.
    Xia X; Cao XX; Liang P; Huang X; Yang SP; Zhao GG
    Appl Microbiol Biotechnol; 2010 Jun; 87(1):383-90. PubMed ID: 20419297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Construction of sugar-based microbial fuel cells by dissimilatory metal reduction bacteria].
    Liu ZD; Lian J; Du ZW; Li HR
    Sheng Wu Gong Cheng Xue Bao; 2006 Jan; 22(1):131-7. PubMed ID: 16572853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Degradation of dichlorvos by Rhodobacter sphaeroides].
    Zhao K; Yu Y; Jiang D; Wang D; Li ZM; Huang GZ; Bai ZH
    Huan Jing Ke Xue; 2009 Apr; 30(4):1199-204. PubMed ID: 19545029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.