These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 26992792)

  • 21. Photosynthetic microbial fuel cells with positive light response.
    Zou Y; Pisciotta J; Billmyre RB; Baskakov IV
    Biotechnol Bioeng; 2009 Dec; 104(5):939-46. PubMed ID: 19575441
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The periplasmic component of the DctPQM TRAP-transporter is part of the DctS/DctR sensory pathway in
    Sánchez-Ortiz VJ; Domenzain C; Poggio S; Dreyfus G; Camarena L
    Microbiology (Reading); 2021 Mar; 167(3):. PubMed ID: 33620307
    [No Abstract]   [Full Text] [Related]  

  • 23. A cluster of four homologous small RNAs modulates C1 metabolism and the pyruvate dehydrogenase complex in Rhodobacter sphaeroides under various stress conditions.
    Billenkamp F; Peng T; Berghoff BA; Klug G
    J Bacteriol; 2015 May; 197(10):1839-52. PubMed ID: 25777678
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Recenct progress in electricigens and microbial fuel cell].
    Hong YG; Guo J; Sun GP
    Wei Sheng Wu Xue Bao; 2007 Feb; 47(1):173-7. PubMed ID: 17436648
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anoxygenic photosynthesis and photooxidative stress: a particular challenge for Roseobacter.
    Berghoff BA; Glaeser J; Nuss AM; Zobawa M; Lottspeich F; Klug G
    Environ Microbiol; 2011 Mar; 13(3):775-91. PubMed ID: 21108722
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Redox potential of quinones in photosynthetic reaction centers from Rhodobacter sphaeroides: dependence on protonation of Glu-L212 and Asp-L213.
    Ishikita H; Morra G; Knapp EW
    Biochemistry; 2003 Apr; 42(13):3882-92. PubMed ID: 12667079
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Implication of composite electrode on the functioning of photo-bioelectrocatalytic fuel cell operated with heterotrophic-anoxygenic condition.
    Navaneeth B; Hari Prasad R; Chiranjeevi P; Chandra R; Sarkar O; Verma A; Subudhi S; Lal B; Venkata Mohan S
    Bioresour Technol; 2015 Jun; 185():331-40. PubMed ID: 25795447
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photocurrent generation by immobilized cyanobacteria via direct electron transport in photo-bioelectrochemical cells.
    Sekar N; Umasankar Y; Ramasamy RP
    Phys Chem Chem Phys; 2014 May; 16(17):7862-71. PubMed ID: 24643249
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photosynthetic diode: electron transport rectification by wetting the quinone cofactor.
    Martin DR; Matyushov DV
    Phys Chem Chem Phys; 2015 Sep; 17(35):22523-8. PubMed ID: 26171665
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protonated rhodosemiquinone at the Q(B) binding site of the M265IT mutant reaction center of photosynthetic bacterium Rhodobacter sphaeroides.
    Maróti Á; Wraight CA; Maróti P
    Biochemistry; 2015 Mar; 54(12):2095-103. PubMed ID: 25760888
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficient hydrogen production from acetate through isolated Rhodobacter sphaeroides.
    Kobayashi J; Yoshimune K; Komoriya T; Kohno H
    J Biosci Bioeng; 2011 Dec; 112(6):602-5. PubMed ID: 21903465
    [TBL] [Abstract][Full Text] [Related]  

  • 32. iRsp1095: a genome-scale reconstruction of the Rhodobacter sphaeroides metabolic network.
    Imam S; Yilmaz S; Sohmen U; Gorzalski AS; Reed JL; Noguera DR; Donohue TJ
    BMC Syst Biol; 2011 Jul; 5():116. PubMed ID: 21777427
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photosynthesis: transduction of light energy into chemical energy.
    Mathis P
    Symp Soc Exp Biol; 1983; 36():223-48. PubMed ID: 6443328
    [No Abstract]   [Full Text] [Related]  

  • 34. Variations of electron flux and microbial community in air-cathode microbial fuel cells fed with different substrates.
    Yu J; Park Y; Cho H; Chun J; Seon J; Cho S; Lee T
    Water Sci Technol; 2012; 66(4):748-53. PubMed ID: 22766862
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantifying the effects of light intensity on bioproduction and maintenance energy during photosynthetic growth of Rhodobacter sphaeroides.
    Imam S; Fitzgerald CM; Cook EM; Donohue TJ; Noguera DR
    Photosynth Res; 2015 Feb; 123(2):167-82. PubMed ID: 25428581
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electron paramagnetic resonance investigation of photosynthetic reaction centers from Rhodobacter sphaeroides R-26 in which Fe2+ was replaced by Cu2+. Determination of hyperfine interactions and exchange and dipole-dipole interactions between Cu2+ and QA-.
    Calvo R; Passeggi MC; Isaacson RA; Okamura MY; Feher G
    Biophys J; 1990 Jul; 58(1):149-65. PubMed ID: 2166597
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A comparison of bioelectricity in microbial fuel cells with aerobic and anaerobic anodes.
    Chen CY; Chen TY; Chung YC
    Environ Technol; 2014; 35(1-4):286-93. PubMed ID: 24600867
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC).
    Strik DP; Terlouw H; Hamelers HV; Buisman CJ
    Appl Microbiol Biotechnol; 2008 Dec; 81(4):659-68. PubMed ID: 18797867
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Effect of pH on photoinduced electron transport in reaction center preparations from Rhodopseudomonas sphaeroides].
    Fabian M; Zakharova NI; Chamorovskiĭ SK; Kononenko AA
    Mol Biol (Mosk); 1980; 14(5):1193-8. PubMed ID: 6968399
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mixotrophic operation of photo-bioelectrocatalytic fuel cell under anoxygenic microenvironment enhances the light dependent bioelectrogenic activity.
    Chandra R; Venkata Subhash G; Venkata Mohan S
    Bioresour Technol; 2012 Apr; 109():46-56. PubMed ID: 22297047
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.