BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

655 related articles for article (PubMed ID: 26993058)

  • 1. Monocarboxylate transporters in the brain and in cancer.
    Pérez-Escuredo J; Van Hée VF; Sboarina M; Falces J; Payen VL; Pellerin L; Sonveaux P
    Biochim Biophys Acta; 2016 Oct; 1863(10):2481-97. PubMed ID: 26993058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Na(+)/H(+) antiporter (NHE1) and lactate/H(+) symporters (MCTs) in pH homeostasis and cancer metabolism.
    Counillon L; Bouret Y; Marchiq I; Pouysségur J
    Biochim Biophys Acta; 2016 Oct; 1863(10):2465-80. PubMed ID: 26944480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of monocarboxylate transporters in head and neck squamous cell carcinoma.
    Chandel V; Maru S; Kumar A; Kumar A; Sharma A; Rathi B; Kumar D
    Life Sci; 2021 Aug; 279():119709. PubMed ID: 34102188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monocarboxylic acid transport.
    Halestrap AP
    Compr Physiol; 2013 Oct; 3(4):1611-43. PubMed ID: 24265240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Lactate in the brain--without turning sour].
    Bergersen LH
    Tidsskr Nor Laegeforen; 2006 Aug; 126(16):2094-7. PubMed ID: 16932776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of epileptiform activity in ketogenic mice: The role of monocarboxylate transporters.
    Forero-Quintero LS; Deitmer JW; Becker HM
    Sci Rep; 2017 Jul; 7(1):4900. PubMed ID: 28687765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monocarboxylate transporters (MCTs) in gliomas: expression and exploitation as therapeutic targets.
    Miranda-Gonçalves V; Honavar M; Pinheiro C; Martinho O; Pires MM; Pinheiro C; Cordeiro M; Bebiano G; Costa P; Palmeirim I; Reis RM; Baltazar F
    Neuro Oncol; 2013 Feb; 15(2):172-88. PubMed ID: 23258846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic coupling and the Reverse Warburg Effect in cancer: Implications for novel biomarker and anticancer agent development.
    Wilde L; Roche M; Domingo-Vidal M; Tanson K; Philp N; Curry J; Martinez-Outschoorn U
    Semin Oncol; 2017 Jun; 44(3):198-203. PubMed ID: 29248131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of monocarboxylate transporters in human cancers: state of the art.
    Pinheiro C; Longatto-Filho A; Azevedo-Silva J; Casal M; Schmitt FC; Baltazar F
    J Bioenerg Biomembr; 2012 Feb; 44(1):127-39. PubMed ID: 22407107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monocarboxylate Transporter 1 in Brain Diseases and Cancers.
    Sun Y; Sun J; He Z; Wang G; Wang Y; Zhao D; Wang Z; Luo C; Tian C; Jiang Q
    Curr Drug Metab; 2019; 20(11):855-866. PubMed ID: 31631816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monocarboxylate transporters in cancer.
    Payen VL; Mina E; Van Hée VF; Porporato PE; Sonveaux P
    Mol Metab; 2020 Mar; 33():48-66. PubMed ID: 31395464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tumor-stroma metabolic relationship based on lactate shuttle can sustain prostate cancer progression.
    Sanità P; Capulli M; Teti A; Galatioto GP; Vicentini C; Chiarugi P; Bologna M; Angelucci A
    BMC Cancer; 2014 Mar; 14():154. PubMed ID: 24597899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lactate shuttle: from substance exchange to regulatory mechanism.
    Wang X; Liu H; Ni Y; Shen P; Han X
    Hum Cell; 2022 Jan; 35(1):1-14. PubMed ID: 34606041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular and subcellular distribution of monocarboxylate transporters in cultured brain cells and in the adult brain.
    Pellerin L; Bergersen LH; Halestrap AP; Pierre K
    J Neurosci Res; 2005 Jan 1-15; 79(1-2):55-64. PubMed ID: 15573400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Basigin (CD147) is the target for organomercurial inhibition of monocarboxylate transporter isoforms 1 and 4: the ancillary protein for the insensitive MCT2 is EMBIGIN (gp70).
    Wilson MC; Meredith D; Fox JE; Manoharan C; Davies AJ; Halestrap AP
    J Biol Chem; 2005 Jul; 280(29):27213-21. PubMed ID: 15917240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The redox switch/redox coupling hypothesis.
    Cerdán S; Rodrigues TB; Sierra A; Benito M; Fonseca LL; Fonseca CP; García-Martín ML
    Neurochem Int; 2006; 48(6-7):523-30. PubMed ID: 16530294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cancer metabolism, stemness and tumor recurrence: MCT1 and MCT4 are functional biomarkers of metabolic symbiosis in head and neck cancer.
    Curry JM; Tuluc M; Whitaker-Menezes D; Ames JA; Anantharaman A; Butera A; Leiby B; Cognetti DM; Sotgia F; Lisanti MP; Martinez-Outschoorn UE
    Cell Cycle; 2013 May; 12(9):1371-84. PubMed ID: 23574725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular and extracellular carbonic anhydrases cooperate non-enzymatically to enhance activity of monocarboxylate transporters.
    Klier M; Andes FT; Deitmer JW; Becker HM
    J Biol Chem; 2014 Jan; 289(5):2765-75. PubMed ID: 24338019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monocarboxylate transporters in the central nervous system: distribution, regulation and function.
    Pierre K; Pellerin L
    J Neurochem; 2005 Jul; 94(1):1-14. PubMed ID: 15953344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular features, regulation, and function of monocarboxylate transporters: implications for drug delivery.
    Enerson BE; Drewes LR
    J Pharm Sci; 2003 Aug; 92(8):1531-44. PubMed ID: 12884241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.