BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 2699326)

  • 1. Rise in intracellular pH is concurrent with 'start' progression of Saccharomyces cerevisiae.
    Anand S; Prasad R
    J Gen Microbiol; 1989 Aug; 135(8):2173-9. PubMed ID: 2699326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The possible functional significance of phosphatidylinositol in G1 arrest of Saccharomyces cerevisiae.
    Dudani AK; Trivedi A; Prasad R
    FEBS Lett; 1983 Mar; 153(1):34-6. PubMed ID: 6337878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amino acid transport: its role in cell division and growth of Saccharomyces cerevisiae cells.
    Dudani AK; Prasad R
    Biochem Int; 1983 Jul; 7(1):15-22. PubMed ID: 6383387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autophagic death after cell cycle arrest at the restrictive temperature in temperature-sensitive cell division cycle and secretory mutants of the yeast Saccharomyces cerevisiae.
    Motizuki M; Yokota S; Tsurugi K
    Eur J Cell Biol; 1995 Nov; 68(3):275-87. PubMed ID: 8603680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of the CDC25 gene product in the signal transmission pathway of the glucose-induced RAS-mediated cAMP signal in the yeast Saccharomyces cerevisiae.
    van Aelst L; Jans AW; Thevelein JM
    J Gen Microbiol; 1991 Feb; 137(2):341-9. PubMed ID: 1849965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon and energetic uncoupling are associated with block of division at different stages of the cell cycle in several cdc mutants of Saccharomyces cerevisiae.
    Aon MA; Mónaco ME; Cortassa S
    Exp Cell Res; 1995 Mar; 217(1):42-51. PubMed ID: 7867719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth and the cell cycle of the yeast Saccharomyces cerevisiae. I. Slowing S phase or nuclear division decreases the G1 cell cycle period.
    Johnston GC; Singer RA
    Exp Cell Res; 1983 Nov; 149(1):1-13. PubMed ID: 6357811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synchronous cell growth occurs upon synchronizing the two regulatory steps of the Saccharomyces cerevisiae cell cycle.
    Moore SA
    Exp Cell Res; 1984 Apr; 151(2):542-56. PubMed ID: 6368252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The activity of plasma membrane H(+)-ATPase is strongly stimulated during Saccharomyces cerevisiae adaptation to growth under high copper stress, accompanying intracellular acidification.
    Fernandes AR; Sá-Correia I
    Yeast; 2001 Apr; 18(6):511-21. PubMed ID: 11284007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low concentrations of trifluoperazine arrest the cell division cycle of Saccharomyces cerevisiae at two specific stages.
    Eilam Y; Chernichovsky D
    J Gen Microbiol; 1988 Apr; 134(4):1063-9. PubMed ID: 3053981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. "Start" mutants of Saccharomyces cerevisiae are suppressed in carbon catabolite-derepressing medium.
    Shuster JR
    J Bacteriol; 1982 Aug; 151(2):1059-61. PubMed ID: 7047491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of cell cycle position on thermotolerance in Saccharomyces cerevisiae.
    Plesset J; Ludwig JR; Cox BS; McLaughlin CS
    J Bacteriol; 1987 Feb; 169(2):779-84. PubMed ID: 3542970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon and energy uncoupling associated with cell cycle arrest of cdc mutants of Saccharomyces cerevisiae may be linked to glucose-induced catabolite repression.
    Mónaco ME; Valdecantos PA; Aon MA
    Exp Cell Res; 1995 Mar; 217(1):52-6. PubMed ID: 7867720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Status of calcium influx in cell cycle of S. cerevisiae.
    Anand S; Prasad R
    Biochem Int; 1987 May; 14(5):963-70. PubMed ID: 3331516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth and the cell cycle of the yeast Saccharomyces cerevisiae. II. Relief of cell-cycle constraints allows accelerated cell divisions.
    Singer RA; Johnston GC
    Exp Cell Res; 1983 Nov; 149(1):15-26. PubMed ID: 6357813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bud formation by the yeast Saccharomyces cerevisiae is directly dependent on "start".
    Singer RA; Bedard DP; Johnston GC
    J Cell Biol; 1984 Feb; 98(2):678-84. PubMed ID: 6363427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inactivation of the CDC25 gene product in Saccharomyces cerevisiae leads to a decrease in glycolytic activity which is independent of cAMP levels.
    Oehlen LJ; Scholte ME; de Koning W; van Dam K
    J Gen Microbiol; 1993 Sep; 139(9):2091-100. PubMed ID: 8245836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The selection of S. cerevisiae mutants defective in the start event of cell division.
    Reed SI
    Genetics; 1980 Jul; 95(3):561-77. PubMed ID: 7002718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of lactic acid production in Saccharomyces cerevisiae by cell sorting for high intracellular pH.
    Valli M; Sauer M; Branduardi P; Borth N; Porro D; Mattanovich D
    Appl Environ Microbiol; 2006 Aug; 72(8):5492-9. PubMed ID: 16885303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Initiation of sporulation in Saccharomyces cerevisiae. Mutations causing derepressed sporulation and G1 arrest in the cell division cycle.
    Dawes IW; Calvert GR
    J Gen Microbiol; 1984 Mar; 130(3):605-13. PubMed ID: 6374028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.