These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

490 related articles for article (PubMed ID: 26993347)

  • 21. Trans-Golgi network: an intersection of trafficking cell wall components.
    Worden N; Park E; Drakakaki G
    J Integr Plant Biol; 2012 Nov; 54(11):875-86. PubMed ID: 23088668
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The inside and outside: topological issues in plant cell wall biosynthesis and the roles of nucleotide sugar transporters.
    Temple H; Saez-Aguayo S; Reyes FC; Orellana A
    Glycobiology; 2016 Sep; 26(9):913-925. PubMed ID: 27507902
    [TBL] [Abstract][Full Text] [Related]  

  • 23. How do secretory products cross the plant cell wall to be released? A new hypothesis involving cyclic mechanical actions of the protoplast.
    Paiva EA
    Ann Bot; 2016 Apr; 117(4):533-40. PubMed ID: 26929201
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Formation and maintenance of the Golgi apparatus in plant cells.
    Ito Y; Uemura T; Nakano A
    Int Rev Cell Mol Biol; 2014; 310():221-87. PubMed ID: 24725428
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The rice dynamin-related protein DRP2B mediates membrane trafficking, and thereby plays a critical role in secondary cell wall cellulose biosynthesis.
    Xiong G; Li R; Qian Q; Song X; Liu X; Yu Y; Zeng D; Wan J; Li J; Zhou Y
    Plant J; 2010 Oct; 64(1):56-70. PubMed ID: 20663087
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Secretion marker proteins and cell-wall polysaccharides move through different secretory pathways.
    Leucci MR; Di Sansebastiano GP; Gigante M; Dalessandro G; Piro G
    Planta; 2007 Mar; 225(4):1001-17. PubMed ID: 17039371
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plant cell wall biosynthesis: genetic, biochemical and functional genomics approaches to the identification of key genes.
    Farrokhi N; Burton RA; Brownfield L; Hrmova M; Wilson SM; Bacic A; Fincher GB
    Plant Biotechnol J; 2006 Mar; 4(2):145-67. PubMed ID: 17177793
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plant extracellular vesicles.
    Cui Y; Gao J; He Y; Jiang L
    Protoplasma; 2020 Jan; 257(1):3-12. PubMed ID: 31468195
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Arabinogalactan glycosyltransferases target to a unique subcellular compartment that may function in unconventional secretion in plants.
    Poulsen CP; Dilokpimol A; Mouille G; Burow M; Geshi N
    Traffic; 2014 Nov; 15(11):1219-34. PubMed ID: 25074762
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein transport in plant cells: in and out of the Golgi.
    Neumann U; Brandizzi F; Hawes C
    Ann Bot; 2003 Aug; 92(2):167-80. PubMed ID: 12876187
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Journey to the cell surface--the central role of the trans-Golgi network in plants.
    Gendre D; Jonsson K; Boutté Y; Bhalerao RP
    Protoplasma; 2015 Mar; 252(2):385-98. PubMed ID: 25187082
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Laying down the bricks: logistic aspects of cell wall biosynthesis.
    Geisler DA; Sampathkumar A; Mutwil M; Persson S
    Curr Opin Plant Biol; 2008 Dec; 11(6):647-52. PubMed ID: 18818118
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Disrupting cell wall integrity impacts endomembrane trafficking to promote secretion over endocytic trafficking.
    Hoffmann N; Mohammad E; McFarlane HE
    J Exp Bot; 2024 Jun; 75(12):3731-3747. PubMed ID: 38676707
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification and characterization of an Arabidopsis mutant with altered localization of NIP5;1, a plasma membrane boric acid channel, reveals the requirement for D-galactose in endomembrane organization.
    Uehara M; Wang S; Kamiya T; Shigenobu S; Yamaguchi K; Fujiwara T; Naito S; Takano J
    Plant Cell Physiol; 2014 Apr; 55(4):704-14. PubMed ID: 24343997
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cell wall biomechanics: a tractable challenge in manipulating plant cell walls 'fit for purpose'!
    Johnson KL; Gidley MJ; Bacic A; Doblin MS
    Curr Opin Biotechnol; 2018 Feb; 49():163-171. PubMed ID: 28915438
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mass spectrometry approaches to study plant endomembrane trafficking.
    Parsons HT; Lilley KS
    Semin Cell Dev Biol; 2018 Aug; 80():123-132. PubMed ID: 29042236
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exocyst and autophagy-related membrane trafficking in plants.
    Pecenková T; Markovic V; Sabol P; Kulich I; Žárský V
    J Exp Bot; 2017 Dec; 69(1):47-57. PubMed ID: 29069430
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sub-cellular trafficking of phytochemicals explored using auto-fluorescent compounds in maize cells.
    Lin Y; Irani NG; Grotewold E
    BMC Plant Biol; 2003 Dec; 3():10. PubMed ID: 14687417
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Membrane and walls: who is master, who is servant?
    Roppolo D; Geldner N
    Curr Opin Plant Biol; 2012 Dec; 15(6):608-17. PubMed ID: 23026117
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein trafficking to the cell wall occurs through mechanisms distinguishable from default sorting in tobacco.
    De Caroli M; Lenucci MS; Di Sansebastiano GP; Dalessandro G; De Lorenzo G; Piro G
    Plant J; 2011 Jan; 65(2):295-308. PubMed ID: 21223393
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.