BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 26993577)

  • 1. Detectors for evaluating the cellular landscape of sphingomyelin- and cholesterol-rich membrane domains.
    Kishimoto T; Ishitsuka R; Kobayashi T
    Biochim Biophys Acta; 2016 Aug; 1861(8 Pt B):812-829. PubMed ID: 26993577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of sphingomyelin- and cholesterol-enriched lipid domains during cytokinesis.
    Abe M; Kobayashi T
    Methods Cell Biol; 2017; 137():15-24. PubMed ID: 28065303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging local sphingomyelin-rich domains in the plasma membrane using specific probes and advanced microscopy.
    Abe M; Kobayashi T
    Biochim Biophys Acta; 2014 May; 1841(5):720-6. PubMed ID: 23860017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging lipid membrane domains with lipid-specific probes.
    Hullin-Matsuda F; Ishitsuka R; Takahashi M; Kobayashi T
    Methods Mol Biol; 2009; 580():203-20. PubMed ID: 19784601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lysenin: a sphingomyelin specific pore-forming toxin.
    Shogomori H; Kobayashi T
    Biochim Biophys Acta; 2008 Mar; 1780(3):612-8. PubMed ID: 17980968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lysenin: a new tool for investigating membrane lipid organization.
    Ishitsuka R; Kobayashi T
    Anat Sci Int; 2004 Dec; 79(4):184-90. PubMed ID: 15633456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-senescent keratinocytes organize in plasma membrane submicrometric lipid domains enriched in sphingomyelin and involved in re-epithelialization.
    Mound A; Lozanova V; Warnon C; Hermant M; Robic J; Guere C; Vie K; Lambert de Rouvroit C; Tyteca D; Debacq-Chainiaux F; Poumay Y
    Biochim Biophys Acta Mol Cell Biol Lipids; 2017 Sep; 1862(9):958-971. PubMed ID: 28599891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The sensing of membrane microdomains based on pore-forming toxins.
    Skočaj M; Bakrač B; Križaj I; Maček P; Anderluh G; Sepčić K
    Curr Med Chem; 2013; 20(4):491-501. PubMed ID: 23244522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring the distribution and dynamics of signaling microdomains in living cells with lipid-specific probes.
    Hullin-Matsuda F; Kobayashi T
    Cell Mol Life Sci; 2007 Oct; 64(19-20):2492-504. PubMed ID: 17876518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tracking cholesterol/sphingomyelin-rich membrane domains with the ostreolysin A-mCherry protein.
    Skočaj M; Resnik N; Grundner M; Ota K; Rojko N; Hodnik V; Anderluh G; Sobota A; Maček P; Veranič P; Sepčić K
    PLoS One; 2014; 9(3):e92783. PubMed ID: 24664106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pore-forming toxins: Properties, diversity, and uses as tools to image sphingomyelin and ceramide phosphoethanolamine.
    Yamaji-Hasegawa A; Hullin-Matsuda F; Greimel P; Kobayashi T
    Biochim Biophys Acta; 2016 Mar; 1858(3):576-92. PubMed ID: 26498396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging lipid rafts.
    Ishitsuka R; Sato SB; Kobayashi T
    J Biochem; 2005 Mar; 137(3):249-54. PubMed ID: 15809325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ostreolysin, a pore-forming protein from the oyster mushroom, interacts specifically with membrane cholesterol-rich lipid domains.
    Sepcić K; Berne S; Rebolj K; Batista U; Plemenitas A; Sentjurc M; Macek P
    FEBS Lett; 2004 Sep; 575(1-3):81-5. PubMed ID: 15388337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective binding of perfringolysin O derivative to cholesterol-rich membrane microdomains (rafts).
    Waheed AA; Shimada Y; Heijnen HF; Nakamura M; Inomata M; Hayashi M; Iwashita S; Slot JW; Ohno-Iwashita Y
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):4926-31. PubMed ID: 11309501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cholesterol reporter molecules.
    Gimpl G; Gehrig-Burger K
    Biosci Rep; 2007 Dec; 27(6):335-58. PubMed ID: 17668316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HIV-1 Gag targeting to the plasma membrane reorganizes sphingomyelin-rich and cholesterol-rich lipid domains.
    Tomishige N; Bin Nasim M; Murate M; Pollet B; Didier P; Godet J; Richert L; Sako Y; Mély Y; Kobayashi T
    Nat Commun; 2023 Nov; 14(1):7353. PubMed ID: 37990014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sphingomyelin-rich domains are sites of lysenin oligomerization: implications for raft studies.
    Kulma M; Hereć M; Grudziński W; Anderluh G; Gruszecki WI; Kwiatkowska K; Sobota A
    Biochim Biophys Acta; 2010 Mar; 1798(3):471-81. PubMed ID: 20018171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and cholesterol domain dynamics of an enriched caveolae/raft isolate.
    Gallegos AM; McIntosh AL; Atshaves BP; Schroeder F
    Biochem J; 2004 Sep; 382(Pt 2):451-61. PubMed ID: 15149285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning of Differential Lipid Order Between Submicrometric Domains and Surrounding Membrane Upon Erythrocyte Reshaping.
    Leonard C; Pollet H; Vermylen C; Gov N; Tyteca D; Mingeot-Leclercq MP
    Cell Physiol Biochem; 2018; 48(6):2563-2582. PubMed ID: 30121671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sphingomyelin chain length influences the distribution of GPI-anchored proteins in rafts in supported lipid bilayers.
    Garner AE; Smith DA; Hooper NM
    Mol Membr Biol; 2007; 24(3):233-42. PubMed ID: 17520480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.