BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 26993776)

  • 1. Brain tumor modeling using the CRISPR/Cas9 system: state of the art and view to the future.
    Mao XY; Dai JX; Zhou HH; Liu ZQ; Jin WL
    Oncotarget; 2016 May; 7(22):33461-71. PubMed ID: 26993776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "CRISPR" validation of recessive brain cancer genes in vivo.
    Zuckermann M; Kawauchi D; Gronych J
    Oncotarget; 2015 Jul; 6(20):17865-6. PubMed ID: 26203775
    [No Abstract]   [Full Text] [Related]  

  • 3. The Implications of CRISPR-Cas9 Genome Editing for IR.
    Perkons NR; Sheth R; Ackerman D; Chen J; Saleh K; Hunt SJ; Nadolski GJ; Shi J; Gade TP
    J Vasc Interv Radiol; 2018 Sep; 29(9):1264-1267.e1. PubMed ID: 30146193
    [No Abstract]   [Full Text] [Related]  

  • 4. CRISPR/Cas9 Engineering of Adult Mouse Liver Demonstrates That the Dnajb1-Prkaca Gene Fusion Is Sufficient to Induce Tumors Resembling Fibrolamellar Hepatocellular Carcinoma.
    Engelholm LH; Riaz A; Serra D; Dagnæs-Hansen F; Johansen JV; Santoni-Rugiu E; Hansen SH; Niola F; Frödin M
    Gastroenterology; 2017 Dec; 153(6):1662-1673.e10. PubMed ID: 28923495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and potential applications of CRISPR-Cas9 genome editing technology in sarcoma.
    Liu T; Shen JK; Li Z; Choy E; Hornicek FJ; Duan Z
    Cancer Lett; 2016 Apr; 373(1):109-118. PubMed ID: 26806808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Vivo Genome Editing Restores Dystrophin Expression and Cardiac Function in Dystrophic Mice.
    El Refaey M; Xu L; Gao Y; Canan BD; Adesanya TMA; Warner SC; Akagi K; Symer DE; Mohler PJ; Ma J; Janssen PML; Han R
    Circ Res; 2017 Sep; 121(8):923-929. PubMed ID: 28790199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel Thrombotic Function of a Human SNP in STXBP5 Revealed by CRISPR/Cas9 Gene Editing in Mice.
    Zhu QM; Ko KA; Ture S; Mastrangelo MA; Chen MH; Johnson AD; O'Donnell CJ; Morrell CN; Miano JM; Lowenstein CJ
    Arterioscler Thromb Vasc Biol; 2017 Feb; 37(2):264-270. PubMed ID: 28062498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ji Luo Elucidates the CRISPR Gene Editing Technology, and How It May Affect Cancer Therapy in the Future.
    Luo J
    Oncology (Williston Park); 2016 Oct; 30(10):879. PubMed ID: 27753053
    [No Abstract]   [Full Text] [Related]  

  • 9. Inhibition of long non-coding RNA UCA1 by CRISPR/Cas9 attenuated malignant phenotypes of bladder cancer.
    Zhen S; Hua L; Liu YH; Sun XM; Jiang MM; Chen W; Zhao L; Li X
    Oncotarget; 2017 Feb; 8(6):9634-9646. PubMed ID: 28038452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy biotechnology in the CRISPR-Cas9 era.
    Estrela R; Cate JH
    Curr Opin Biotechnol; 2016 Apr; 38():79-84. PubMed ID: 26874259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The CRISPR-Cas toolbox and gene editing technologies.
    Liu G; Lin Q; Jin S; Gao C
    Mol Cell; 2022 Jan; 82(2):333-347. PubMed ID: 34968414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR-Cas12 and Cas13: the lesser known siblings of CRISPR-Cas9.
    Yan F; Wang W; Zhang J
    Cell Biol Toxicol; 2019 Dec; 35(6):489-492. PubMed ID: 31468291
    [No Abstract]   [Full Text] [Related]  

  • 13. Recent Progress in CRISPR/Cas9 Technology.
    Mei Y; Wang Y; Chen H; Sun ZS; Ju XD
    J Genet Genomics; 2016 Feb; 43(2):63-75. PubMed ID: 26924689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retroviral Vectors for Cancer Gene Therapy.
    Schambach A; Morgan M
    Recent Results Cancer Res; 2016; 209():17-35. PubMed ID: 28101685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR-Cas9 Targeting of PCSK9 in Human Hepatocytes In Vivo-Brief Report.
    Wang X; Raghavan A; Chen T; Qiao L; Zhang Y; Ding Q; Musunuru K
    Arterioscler Thromb Vasc Biol; 2016 May; 36(5):783-6. PubMed ID: 26941020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice.
    Xu R; Wei P; Yang J
    Methods Mol Biol; 2017; 1498():33-40. PubMed ID: 27709567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-Cas9 system: A new-fangled dawn in gene editing.
    Gupta D; Bhattacharjee O; Mandal D; Sen MK; Dey D; Dasgupta A; Kazi TA; Gupta R; Sinharoy S; Acharya K; Chattopadhyay D; Ravichandiran V; Roy S; Ghosh D
    Life Sci; 2019 Sep; 232():116636. PubMed ID: 31295471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research].
    Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB
    Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Challenges of in vitro genome editing with CRISPR/Cas9 and possible solutions: A review.
    Ebrahimi V; Hashemi A
    Gene; 2020 Aug; 753():144813. PubMed ID: 32470504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Toolkit of CRISPR-Based Genome Editing Systems in Drosophila.
    Xu J; Ren X; Sun J; Wang X; Qiao HH; Xu BW; Liu LP; Ni JQ
    J Genet Genomics; 2015 Apr; 42(4):141-9. PubMed ID: 25953352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.