These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

920 related articles for article (PubMed ID: 26994074)

  • 21. Saccharomyces cerevisiae lacking Btn1p modulate vacuolar ATPase activity to regulate pH imbalance in the vacuole.
    Padilla-López S; Pearce DA
    J Biol Chem; 2006 Apr; 281(15):10273-80. PubMed ID: 16423829
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The dual mechanism of the antifungal effect of new lysosomotropic agents on the Saccharomyces cerevisiae RXII strain.
    Krasowska A; Chmielewska L; Łuczyński J; Witek S; Sigler K
    Cell Mol Biol Lett; 2003; 8(1):111-20. PubMed ID: 12655364
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibitors of V-ATPase proton transport reveal uncoupling functions of tether linking cytosolic and membrane domains of V0 subunit a (Vph1p).
    Chan CY; Prudom C; Raines SM; Charkhzarrin S; Melman SD; De Haro LP; Allen C; Lee SA; Sklar LA; Parra KJ
    J Biol Chem; 2012 Mar; 287(13):10236-10250. PubMed ID: 22215674
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of vacuolar ATPase subunit H (VmaH) on cellular pH, asexual cycle, stress tolerance and virulence in Beauveria bassiana.
    Zhu J; Zhu XG; Ying SH; Feng MG
    Fungal Genet Biol; 2017 Jan; 98():52-60. PubMed ID: 28011319
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Loss of vacuolar proton-translocating ATPase activity in yeast results in chronic oxidative stress.
    Milgrom E; Diab H; Middleton F; Kane PM
    J Biol Chem; 2007 Mar; 282(10):7125-36. PubMed ID: 17215245
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 8-Dehydrosterols induce membrane traffic and autophagy defects through V-ATPase dysfunction in Saccharomyces cerevisae.
    Hernández A; Serrano-Bueno G; Perez-Castiñeira JR; Serrano A
    Biochim Biophys Acta; 2015 Nov; 1853(11 Pt A):2945-56. PubMed ID: 26344037
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mutations in the yeast KEX2 gene cause a Vma(-)-like phenotype: a possible role for the Kex2 endoprotease in vacuolar acidification.
    Oluwatosin YE; Kane PM
    Mol Cell Biol; 1998 Mar; 18(3):1534-43. PubMed ID: 9488470
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of TFP1 in vacuolar acidification, oxidative stress and filamentous development in Candida albicans.
    Jia C; Yu Q; Xu N; Zhang B; Dong Y; Ding X; Chen Y; Zhang B; Xing L; Li M
    Fungal Genet Biol; 2014 Oct; 71():58-67. PubMed ID: 25220074
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vacuolar H+-ATPase (V-ATPase) promotes vacuolar membrane permeabilization and nonapoptotic death in stressed yeast.
    Kim H; Kim A; Cunningham KW
    J Biol Chem; 2012 Jun; 287(23):19029-39. PubMed ID: 22511765
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel role for the yeast protein kinase Dbf2p in vacuolar H+-ATPase function and sorbic acid stress tolerance.
    Makrantoni V; Dennison P; Stark MJR; Coote PJ
    Microbiology (Reading); 2007 Dec; 153(Pt 12):4016-4026. PubMed ID: 18048916
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coordinated glucose-induced Ca
    Ma TY; Deprez MA; Callewaert G; Winderickx J
    Cell Calcium; 2021 Dec; 100():102479. PubMed ID: 34610487
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Activation and significance of vacuolar H+-ATPase in Saccharomyces cerevisiae adaptation and resistance to the herbicide 2,4-dichlorophenoxyacetic acid.
    Fernandes AR; Durão PJ; Santos PM; Sá-Correia I
    Biochem Biophys Res Commun; 2003 Dec; 312(4):1317-24. PubMed ID: 14652018
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The where, when, and how of organelle acidification by the yeast vacuolar H+-ATPase.
    Kane PM
    Microbiol Mol Biol Rev; 2006 Mar; 70(1):177-91. PubMed ID: 16524922
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Alternative mechanisms of vacuolar acidification in H(+)-ATPase-deficient yeast.
    Plant PJ; Manolson MF; Grinstein S; Demaurex N
    J Biol Chem; 1999 Dec; 274(52):37270-9. PubMed ID: 10601292
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vacuolar H+-ATPase works in parallel with the HOG pathway to adapt Saccharomyces cerevisiae cells to osmotic stress.
    Li SC; Diakov TT; Rizzo JM; Kane PM
    Eukaryot Cell; 2012 Mar; 11(3):282-91. PubMed ID: 22210831
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of genes required for maximal tolerance to high-glucose concentrations, as those present in industrial alcoholic fermentation media, through a chemogenomics approach.
    Teixeira MC; Raposo LR; Palma M; Sá-Correia I
    OMICS; 2010 Apr; 14(2):201-10. PubMed ID: 20210661
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of extracellular acidification on the activity of plasma membrane ATPase and on the cytosolic and vacuolar pH of Saccharomyces cerevisiae.
    Carmelo V; Santos H; Sá-Correia I
    Biochim Biophys Acta; 1997 Apr; 1325(1):63-70. PubMed ID: 9106483
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of vacuolar H+-ATPase activity by the Cdc42 effector Ste20 in Saccharomyces cerevisiae.
    Lin M; Li SC; Kane PM; Höfken T
    Eukaryot Cell; 2012 Apr; 11(4):442-51. PubMed ID: 22327006
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intracellular acidification does not account for inhibition of Saccharomyces cerevisiae growth in the presence of ethanol.
    Rosa MF; Sá-Correia I
    FEMS Microbiol Lett; 1996 Jan; 135(2-3):271-4. PubMed ID: 8595868
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vacuolar H(+)-ATPase, but not mitochondrial F(1)F(0)-ATPase, is required for NaCl tolerance in Saccharomyces cerevisiae.
    Hamilton CA; Taylor GJ; Good AG
    FEMS Microbiol Lett; 2002 Mar; 208(2):227-32. PubMed ID: 11959441
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 46.