These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 26994337)

  • 41. Application of green zero-valent iron nanoparticles to the remediation of soils contaminated with ibuprofen.
    Machado S; Stawiński W; Slonina P; Pinto AR; Grosso JP; Nouws HP; Albergaria JT; Delerue-Matos C
    Sci Total Environ; 2013 Sep; 461-462():323-9. PubMed ID: 23738986
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Exploratory study of removing nutrients from aqueous environments employing a green synthesised nano zero-valent iron.
    Abida O; Van der Graaf F; Li LY
    Environ Technol; 2022 May; 43(13):2017-2032. PubMed ID: 33317431
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Impact of nano zero valent iron (NZVI) on methanogenic activity and population dynamics in anaerobic digestion.
    Yang Y; Guo J; Hu Z
    Water Res; 2013 Nov; 47(17):6790-800. PubMed ID: 24112628
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of nanoscale zero-valent iron confined in mesostructure on Escherichia coli.
    Sun X; Yan Y; Wang M; Han Z
    Environ Sci Pollut Res Int; 2017 Oct; 24(30):24038-24045. PubMed ID: 28913810
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effectiveness of stimulating PCE reductive dechlorination: a step-wise approach.
    Ni Z; Smit M; Grotenhuis T; van Gaans P; Rijnaarts H
    J Contam Hydrol; 2014 Aug; 164():209-18. PubMed ID: 24995946
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Remediation of pyrene-contaminated soil by synthesized nanoscale zero-valent iron particles.
    Chang MC; Kang HY
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 May; 44(6):576-82. PubMed ID: 19337920
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhanced Dechlorination of 1,2-Dichloroethane by Coupled Nano Iron-Dithionite Treatment.
    Nunez Garcia A; Boparai HK; O'Carroll DM
    Environ Sci Technol; 2016 May; 50(10):5243-51. PubMed ID: 27128632
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Batch-test study on the dechlorination of 1,1,1-trichloroethane in contaminated aquifer material by zero-valent iron.
    Lookman R; Bastiaens L; Borremans B; Maesen M; Gemoets J; Diels L
    J Contam Hydrol; 2004 Oct; 74(1-4):133-44. PubMed ID: 15358490
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Application of Nano-Sized Zero-Valent Iron for In Situ Remediation of Chlorinated Ethylenes in Groundwater: A Field Case Study.
    Lacina P; Dvorak V; Vodickova E; Barson P; Kalivoda J; Goold S
    Water Environ Res; 2015 Apr; 87(4):326-33. PubMed ID: 26462077
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead.
    Kim H; Hong HJ; Jung J; Kim SH; Yang JW
    J Hazard Mater; 2010 Apr; 176(1-3):1038-43. PubMed ID: 20042289
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter.
    Zhang M; He F; Zhao D; Hao X
    Water Res; 2011 Mar; 45(7):2401-14. PubMed ID: 21376362
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Combination of zero-valent iron and anaerobic microorganisms immobilized in luffa sponge for degrading 1,1,1-trichloroethane and the relevant microbial community analysis.
    Wang W; Wu Y
    Appl Microbiol Biotechnol; 2017 Jan; 101(2):783-796. PubMed ID: 27783109
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Influence of humic acid on the colloidal stability of surface-modified nano zero-valent iron.
    Dong H; Lo IM
    Water Res; 2013 Jan; 47(1):419-27. PubMed ID: 23123051
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones.
    He F; Zhao D; Paul C
    Water Res; 2010 Apr; 44(7):2360-70. PubMed ID: 20106501
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Influence of nanoscale zero-valent iron on geochemical properties of groundwater and vinyl chloride degradation: A field case study.
    Wei YT; Wu SC; Chou CM; Che CH; Tsai SM; Lien HL
    Water Res; 2010 Jan; 44(1):131-40. PubMed ID: 19800096
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of green zero-valent iron nanoparticles produced with tree leaf extracts.
    Machado S; Pacheco JG; Nouws HP; Albergaria JT; Delerue-Matos C
    Sci Total Environ; 2015 Nov; 533():76-81. PubMed ID: 26151651
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Use of zero-valent iron nanoparticles in inactivating microbes.
    Diao M; Yao M
    Water Res; 2009 Dec; 43(20):5243-51. PubMed ID: 19783027
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nanoscale zero-valent iron application for in situ reduction of hexavalent chromium and its effects on indigenous microorganism populations.
    Němeček J; Lhotský O; Cajthaml T
    Sci Total Environ; 2014 Jul; 485-486():739-747. PubMed ID: 24369106
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nitrate reduction using nanosized zero-valent iron supported by polystyrene resins: role of surface functional groups.
    Jiang Z; Lv L; Zhang W; Du Q; Pan B; Yang L; Zhang Q
    Water Res; 2011 Mar; 45(6):2191-8. PubMed ID: 21316071
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Catalytic transformation of persistent contaminants using a new composite material based on nanosized zero-valent iron.
    Dror I; Jacov OM; Cortis A; Berkowitz B
    ACS Appl Mater Interfaces; 2012 Jul; 4(7):3416-23. PubMed ID: 22680618
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.