BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 26994462)

  • 1. Sequential recycling of enzymatic lipid-extracted hydrolysate in fermentations with a thraustochytrid.
    Lowrey J; Armenta RE; Brooks MS
    Bioresour Technol; 2016 Jun; 209():333-42. PubMed ID: 26994462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recycling of lipid-extracted hydrolysate as nitrogen supplementation for production of thraustochytrid biomass.
    Lowrey J; Armenta RE; Brooks MS
    J Ind Microbiol Biotechnol; 2016 Aug; 43(8):1105-15. PubMed ID: 27155854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nutrient recycling of lipid-extracted waste in the production of an oleaginous thraustochytrid.
    Lowrey J; Brooks MS; Armenta RE
    Appl Microbiol Biotechnol; 2016 May; 100(10):4711-21. PubMed ID: 27000841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Food waste as nutrient source in heterotrophic microalgae cultivation.
    Pleissner D; Lam WC; Sun Z; Lin CS
    Bioresour Technol; 2013 Jun; 137():139-46. PubMed ID: 23587816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nutrient and media recycling in heterotrophic microalgae cultures.
    Lowrey J; Armenta RE; Brooks MS
    Appl Microbiol Biotechnol; 2016 Feb; 100(3):1061-1075. PubMed ID: 26572520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nutrient recycle from defatted microalgae (Aurantiochytrium) with hydrothermal treatment for microalgae cultivation.
    Aida TM; Maruta R; Tanabe Y; Oshima M; Nonaka T; Kujiraoka H; Kumagai Y; Ota M; Suzuki I; Watanabe MM; Inomata H; Smith RL
    Bioresour Technol; 2017 Mar; 228():186-192. PubMed ID: 28063361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid production with Trichosporon oleaginosus in a membrane bioreactor using microalgae hydrolysate.
    Meo A; Priebe XL; Weuster-Botz D
    J Biotechnol; 2017 Jan; 241():1-10. PubMed ID: 27984117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterotrophy of filamentous oleaginous microalgae Tribonema minus for potential production of lipid and palmitoleic acid.
    Zhou W; Wang H; Chen L; Cheng W; Liu T
    Bioresour Technol; 2017 Sep; 239():250-257. PubMed ID: 28531849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different fermentation strategies by Schizochytrium mangrovei strain pq6 to produce feedstock for exploitation of squalene and omega-3 fatty acids.
    Hoang LAT; Nguyen HC; Le TT; Hoang THQ; Pham VN; Hoang MHT; Ngo HTT; Hong DD
    J Phycol; 2018 Aug; 54(4):550-556. PubMed ID: 29889307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recycling of food waste as nutrients in Chlorella vulgaris cultivation.
    Lau KY; Pleissner D; Lin CSK
    Bioresour Technol; 2014 Oct; 170():144-151. PubMed ID: 25128844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using straw hydrolysate to cultivate Chlorella pyrenoidosa for high-value biomass production and the nitrogen regulation for biomass composition.
    Zhang TY; Wang XX; Wu YH; Wang JH; Deantes-Espinosa VM; Zhuang LL; Hu HY; Wu GX
    Bioresour Technol; 2017 Nov; 244(Pt 2):1254-1260. PubMed ID: 28645566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid Production of Heterotrophic Chlorella sp. from Hydrolysate Mixtures of Lipid-Extracted Microalgal Biomass Residues and Molasses.
    Zheng H; Ma X; Gao Z; Wan Y; Min M; Zhou W; Li Y; Liu Y; Huang H; Chen P; Ruan R
    Appl Biochem Biotechnol; 2015 Oct; 177(3):662-74. PubMed ID: 26234438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Omega-3 fatty acid production from enzyme saccharified hemp hydrolysate using a novel marine thraustochytrid strain.
    Gupta A; Abraham RE; Barrow CJ; Puri M
    Bioresour Technol; 2015 May; 184():373-378. PubMed ID: 25497057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a closed-loop process for fusel alcohol production and nutrient recycling from microalgae biomass.
    Liu F; Lane P; Hewson JC; Stavila V; Tran-Gyamfi MB; Hamel M; Lane TW; Davis RW
    Bioresour Technol; 2019 Jul; 283():350-357. PubMed ID: 30933901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipase-catalyzed in-situ biosynthesis of glycerol-free biodiesel from heterotrophic microalgae, Aurantiochytrium sp. KRS101 biomass.
    Kim KH; Lee OK; Kim CH; Seo JW; Oh BR; Lee EY
    Bioresour Technol; 2016 Jul; 211():472-7. PubMed ID: 27035480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Medium recycling for Nannochloropsis gaditana cultures for aquaculture.
    González-López CV; Cerón-García MC; Fernández-Sevilla JM; González-Céspedes AM; Camacho-Rodríguez J; Molina-Grima E
    Bioresour Technol; 2013 Feb; 129():430-8. PubMed ID: 23262021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid production of Chlorella vulgaris from lipid-extracted microalgal biomass residues through two-step enzymatic hydrolysis.
    Zheng H; Gao Z; Yin F; Ji X; Huang H
    Bioresour Technol; 2012 Aug; 117():1-6. PubMed ID: 22609706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corecovery of lipids and fermentable sugars from Rhodosporidium toruloides using ionic liquid cosolvents: application of recycle to batch fermentation.
    Severa G; Kumar G; Cooney MJ
    Biotechnol Prog; 2014; 30(5):1239-42. PubMed ID: 25078628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of sequential recycling of spent media wastewater on docosahexaenoic acid production by newly isolated strain Aurantiochytrium sp. ICTFD5.
    Bagul VP; Annapure US
    Bioresour Technol; 2020 Jun; 306():123153. PubMed ID: 32197193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of biomass and lipids by the oleaginous microalgae Monoraphidium sp. QLY-1 through heterotrophic cultivation and photo-chemical modulator induction.
    Zhao Y; Li D; Ding K; Che R; Xu JW; Zhao P; Li T; Ma H; Yu X
    Bioresour Technol; 2016 Jul; 211():669-76. PubMed ID: 27058402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.